Start Submission Become a Reviewer

Reading: Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, phot...

Download

A- A+
Alt. Display

Original Research Papers

Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

Authors:

H. Sievering ,

Department of Geography and Environmental Science, University of Colorado-Denver, Denver, CO 80217; Long-Term Ecological Research Prog., INSTAAR, 450 UCB, University of Colorado-Boulder, Boulder, CO 80309-0450, US
X close

T. Tomaszewski,

Department of Geography and Environmental Science, University of Colorado-Denver, Denver, CO 80217; Long-Term Ecological Research Prog., INSTAAR, 450 UCB, University of Colorado-Boulder, Boulder, CO 80309-0450, US
X close

J. Torizzo

Department of Geography and Environmental Science, University of Colorado-Denver, Denver, CO 80217, US
X close

Abstract

Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO3 and NH3 as well as inferred (NOx and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kgN ha.1 total deposition is retained in canopy foliage and branches. This CNU constitutes ~ 1/3 of canopy growing season new N supply at this conifer forest site.

Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO2 uptake) correlated with CNU. Multiple regression indicates ~20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering–part II), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. Namended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU.

How to Cite: Sievering, H., Tomaszewski, T. and Torizzo, J., 2007. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus B: Chemical and Physical Meteorology, 59(3), pp.483–492. DOI: http://doi.org/10.1111/j.1600-0889.2007.00264.x
1
Views
  Published on 01 Jan 2007
 Accepted on 11 Dec 2006            Submitted on 15 May 2006

References

  1. Ammann , M. , Stadler , M. , Suter , M. , Brunold , C. and Baltensperger , U . 1995 . Uptake of nitrogen into plant foliage . J. Exp. BoL 46 , 1685 – 1691 .  

  2. Arthur , M. and Fahey , T . 1993 . Throughfall chemistry in an Engelmann spruce-subalpine fir forest in north-central Colorado . Can. J. For Res . 23 , 738 – 744 .  

  3. Baron , J. S. , Rueth , H. , Wolfe , A. , Nydick , K. , Allston , E. and co-authors. 2000. Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3, 352 – 368.  

  4. Birk , E. M. and Vitousek , P.M . 1986 . Nitrogen availability and nitrogen use efficiency in loblolly pine stands . Ecology 67 , 69 – 79 .  

  5. Boyce , R. , Friedland , A. , Chamberlain , C. and Poulson , S . 1996 . Direct canopy uptake from 15N-labeled wet deposition by mature red spruce , Can. J. For. Res . 26 , 1539 – 1547 .  

  6. Calanni , J. , Berg , E. , Wood , M. , Mangis , D. , Boyce , R. and co-authors. 1999. Atmospheric nitrogen deposition at a conifer forest: response of free amino acids in Engelmann spruce needles, Environ. Pollution, 105, 79 – 89.  

  7. Cole , D. and Rapp , M . 1981 . Elemental cycling in forest ecosystems . In: Dynamic Properties of Forest Ecosystems (ed. D. Reichle ). Cambridge Univ. Press , New York , 341 – 409 .  

  8. Fahey , D. and Birk E . 1991 . Internal redistribution and and reabsorp-tion . In: Techniques and Approaches in Forest Tree Physiology (eds J . Lassoie and T . Hinckley ). CRC Press, Boca Raton, Florida , 225 - 245 .  

  9. Friedland , A. J. and Miller , E. K . 1991 . Nitrogen deposition, distribution and cycling in a subalpine spruce-fir forest in the Adirondacics, New York, USA . Biogeochemistiy 14 , 31 – 55 .  

  10. Goulden , M. , Munger , J. , Fan , S-M. and Wofsy , S . 1996 . Exchange of CO2 by a deciduous forest: response to interannual climate variability . Science 271 , 1576 – 78 .  

  11. Harrison , A. , Schulze , E. D. , Gebauer , G. and Bruckner , G. 2000. Canopy uptake and utilization of atmospheric pollutant nitrogen. In: Carbon and Nitrogen Cycling in European Forest Ecosystems, EcoL Stud. 142 (ed Schulze, E. D.). Springer, Berlin, 171 – 188.  

  12. Holland , E . 1997 . Variations in the predicted spatial distribution of at-mospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res . 102 , 15 849-15 866. Hood, E., Williams, M. and Caine, N. 2003. Landscape controls on organic and inorganic nitrogen leaching across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range. Ecosystems 6 , 31 – 45 .  

  13. Horn , R. , Schulze , E. D. and Hantschel , R. 1989. Nutrient balance and element cycling in Norway spruce stands. In: Forest Decline and Air Pollution, EcoL Stud. 77, Springer, Berlin, 444 – 455.  

  14. Johnson , D. and Lindberg , S . 1992 . Atmospheric Deposition and Forest Nutrient Cycling , Springer-Verlag , New York , 1 – 486 .  

  15. Kozlowski , T. T. , Kramer , P. J. and Pallardy , S. G. 1991. The Physiological Ecology of Woody Plants, Academic Press, San Diego , 1 - 657 .  

  16. Maxwell , K. and Johnson , G. 2000. Chlorophyll fluorescence-a practical guide, J. Exp. BoL 51 , 659 – 668.  

  17. Miller , J. B. , White , J. , Tans , P. , Mesarie , K. and Conway , T. 2005. Differential environmental control of terrestrial carbon fluxes in tropical and temperate zones. Proc. of CMDL Ann. Conf., April, 2005, NOAA-CMDL, 315 Broadway, Boulder, CO, 80309, U.S.A.  

  18. Monson , R. , Turnipseed , A. , Sparks , J. , Harley , P. , Scott-Denton , L. and co-authors . 2002. Carbon sequestration in a high-elevation subalpine forest. Global Change Biol. 8 , 459 – 478.  

  19. Niinemets , U. and Tenhunen , J . 1997 . A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccha rum . Plant, Cell, Environ. 20 , 845 – 866 .  

  20. Ollinger , S. , Aber , J. and Federer , C . 1998 . Estimating regional forest productivity and water yield using an ecosystem model linked to a GIS . Landscape EcoL 13 , 323 – 334 .  

  21. Pacala , S. , Birdsey , R. , Field , C. , Houghton , R. , Schimel , D. and co-authors 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292, 2316 – 2320.  

  22. Parker , G . 1983 . Throughfall and stemflow in the forest nutrient cycle . Adv. EcoL Res . 13 , 57 – 133 .  

  23. Parrish , D. , Norton , R. , Bollinger , M. , Albritton , D. and Fehsenfeld , F. 1986. Measurements of HNO3 and NO3- particulates at a rural site in the Colorado mountains. J. Geophys. Res . 91 , 5379 – 5393. Perez, C. A. and Bayley, S. 2003. Nitrogen cycling in temperate forests. Gayana BoL 60(1), 25 – 33.  

  24. Reich , P. , Kloeppel , B. , Ellsworth , D. and Walters , M. 1995. Different photosynthesis-Nitrogen relations in deciduous hardwood and ever-green coniferous tree species. Oecologia 104, 24 – 30.  

  25. Rennenberg , H. and Gessler , A . 1999 . Consequences of N deposition to forest ecosystems-recent results and future research needs . Water Air Soil Poll . 116 , 47 – 64 .  

  26. Rueth , H. and Baron , J . 2002 . Differences in Englemann spruce forest biogeochemistry east and west of the continental divide . Ecosystems 5 , 45 – 57 .  

  27. Ruijgrok , W. , Tieben , H. and Eisinga , P. 1997. The dry deposition of particles to a forest canopy: comparison of model and experimental results. Atmos. Environ. 31, 399 – 415.  

  28. Schindler , D. and Bayley , S . 1993 . The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition . Glob. Biogeochem. Cycles 7 , 717 – 733 .  

  29. Schulze , E. D . 2000 . Carbon and Nitrogen Cycling in European Forest Ecosystems . Springer , Berlin . 1 – 500 .  

  30. Sievering , H . 2001. Atmospheric chemistry and deposition. In: Structure and Function of an Alpine Ecosystem Niwot Ridge, Colorado (eds W. D. Bowman and T. R. Seastedt). Oxford University Press, New York, 32 – 44.  

  31. Sievering , H . 2003. Nitrogen atmosphere-forest canopy exchange at the Niwot LTER and eastern US mixed forest AmeriFlux sites: relation to NEE, final report, SouthCentral Regional Center of NIGEC, Tulane Univ., New Orleans, LA 70118.  

  32. Sievering , H. , Fernandez , I. , Lee , J. , Hom , J. and Rustad , L. 2000. For-est canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: carbon storage implications? Global Biogeochem. Cy-cles 14, 1153 – 1159.  

  33. Sievering , H. , Kelly , T. , McConville , G. , Seibold , C. and Turnipseed , A . 2001 . Nitric acid dry deposition to conifer forests: Niwot Ridge spruce-fir-pine study . Atmos. Environ . 35 , 3851 – 3859 .  

  34. Thimonier , A. , Schmitt , M. , Waldner , P. and Rihm , B . 2005 . Atmospheric deposition on Swiss long-term forest ecosystem research (LWF) plots . Environ. Monitor Assess . 104 , 81 – 118 .  

  35. Tomaszewslci , T. , Boyce , R. and Sievering , H . 2003 . Canopy up-take of atmospheric nitrogen and new growth nitrogen require-ment at a Colorado subalpine forest . Can. J. For Res . 33 , 2221 – 2227 .  

  36. Tomaszewski , T . 2006 . Atmospheric Nitrogen Deposition at a Conifer Forest: Canopy N Uptake and Photosynthesis-Chapter 1 of PhD thesis, Environmental Studies Prog . and Inst. for Arctic & Alpine Research, Univ. of Colorado, Boulder,Boulder, CO , U.S.A .  

  37. Tomaszewslci , T. and Sievering , H . 2007. Canopy uptake of atmospheric N deposition at a conifer forest: part II-response of chlorophyll flu-orescence and gas-exchange parameters, Tellus 59B, this issue. Torizzo, J. and Sievering, H. 2002. Gaseous ammonia exchange and particulate nitrogen deposition at a coniferous subalpine forest, Niwot Ridge, Colorado. MS Thesis #108, MS in Environ. Science Prog., Univ. of Colorado, Denver, CO.  

  38. Townsend , A. , Braswell , B. , Holland , E. and Penner , J . 1996 . Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen . EcoL AppL 6 , 806 – 4 .  

  39. Vose , J. and Swank , W . 1990 . Preliminary estimates of foliar absorp-tion of 15N-labeled nitric acid (HNO3) by eastern white pine (Pinus strobus). Can. J. For Res. 20 , 857 – 863 .  

  40. Wesely , M. , Eastman , J. and Stedman , D . 1982 . An eddy correlation measurement of NO2 flux to vegetation and comparison to 03 flux . Atmos. Environ . 16 , 815 – 820 .  

  41. Zar , J. H . 1984 . Biostatistical Analysis 2nd Edition. Prentice-Hall , En-glewood Cliffs , NJ , 718 .  

comments powered by Disqus