Start Submission Become a Reviewer

Reading: Towards a comprehensive emission inventory of terpenoids from boreal ecosystems

Download

A- A+
Alt. Display

Original Research Papers

Towards a comprehensive emission inventory of terpenoids from boreal ecosystems

Authors:

V. Tarvainen ,

Finnish Meteorological Institute, Air Quality Research, P.O. Box 503, 00101 Helsinki, FI
X close

H. Hakola,

Finnish Meteorological Institute, Air Quality Research, P.O. Box 503, 00101 Helsinki, FI
X close

J. Rinne,

University of Helsinki, Dept. Physical Sciences, P.O. Box 64, 00014 Univ. Helsinki, FI
X close

H. Hellén,

Finnish Meteorological Institute, Air Quality Research, P.O. Box 503, 00101 Helsinki, FI
X close

S. Haapanala

University of Helsinki, Dept. Physical Sciences, P.O. Box 64, 00014 Univ. Helsinki, FI
X close

Abstract

The biogenic volatile organic compound emissions in the south boreal, middle boreal and north boreal vegetation zones in Finland were calculated utilizing satellite land cover information and actual meteorological data in a BEIS-type canopy emission model. The sesquiterpene emissions from the boreal forest were estimated for the first time, and the inventory was further complemented by the inclusion of wetland isoprene emissions from open fens. Recently published results from emission measurements carried out in various parts of the boreal region were utilized in the compilation of the standard emission potentials and monoterpene emission spectra for the deciduous and coniferous forest categories and wetlands. The average annual isoprene emission fluxes from forests were 73, 56 and 45, and those of monoterpenes 657, 567 and 342 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The average annual sesquiterpene fluxes were of the same order of magnitude as isoprene, being 54, 46 and 26 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The isoprene emissions from wetlands were significant, contributing 3%, 18% and 31% of the annual isoprene emissions in the south boreal, middle boreal and north boreal vegetation zones, respectively. Throughout the boreal region, the main emitted monoterpenes were α-pinene and Δ3-carene, with significant contributions from β-pinene and sabinene in summer and autumn. Due to the new seasonal emission potentials of the coniferous species introduced in this work, the overwhelming role of spruce as the main isoprene and monoterpene emitter in the boreal forest is subdued. The new emission inventory also accentuates the role of the boreal deciduous trees as terpenoid emitters in the late summer months.

How to Cite: Tarvainen, V., Hakola, H., Rinne, J., Hellén, H. and Haapanala, S., 2007. Towards a comprehensive emission inventory of terpenoids from boreal ecosystems. Tellus B: Chemical and Physical Meteorology, 59(3), pp.526–534. DOI: http://doi.org/10.1111/j.1600-0889.2007.00263a.x
  Published on 01 Jan 2007
 Accepted on 21 Nov 2006            Submitted on 25 Apr 2006

References

  1. Ahti , T. , Hämet-Ahti , L. and Jalas , J . 1968 . Vegetation zones and their sections in northwestern Europe. Ann . BoL Fennic i 5 , 169 – 211 .  

  2. Amann , M. , Bertok , I. , Cofala , J. , Gyarfas , F. , Heyes , C. and co-authors. 2005. Baseline Scenarios for the Clean Air for Europe (CAFE) Pro-gramme, Final Report. International Institute of Applied Systems Analysis (HASA), Laxenburg, Austria.  

  3. Bonn , B. and Moortgat , G. K . 2003 . Sesquiterpene ozonolysis: origin of atmospheric new particle formation from biogenic hydrocarbons . Geophys. Res. Lett . 30 , 1585 , https://doi.org/10.1029/2003GL017000 .  

  4. Calogirou , A. , Larsen , B. R. and Kotzias , D . 1999 . Gas-phase terpene oxidation products: a review . Atmos. Environ . 33 , 1423 – 1439 .  

  5. Carter , W. P. L . 1996 . Condensed atmospheric photooxidation mecha-nisms for isoprene . Atmos. Environ . 30 , 4275 – 4290 .  

  6. Chameides , W. L. , Fehsenfeld , F. , Rodgers , M.O. , Cardelino , C. , Mar-tinez, J. and co-authors. 1992. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res . 97 ( D5 ), 6037 – 6055.  

  7. Chung , S. H. and Seinfeld , J. H . 2002 . Global distribution and climate forcing of carbonaceous aerosols . J. Geophys. Res . 107 ( D19 ), 4407 , https://doi.org/10.1029/2001JDO01397 .  

  8. Claeys , M. , Graham , B. , Vas , G. , Wang , W. , Vermeylen , R. and co-authors. 2004. Formation of secondary organic aerosols through pho-tooxidation of isoprene. Science 303, 1173 – 1176.  

  9. Griffin , R. J. , Cocker , DI D. R. , Flagan , R. C. , and Seinfeld , J. H . 1999a . Organic aerosol formation from the oxidation of biogenic hydrocar-bons . J. Geophys. Res . 104 ( D3 ), 3555 – 3567 .  

  10. Griffin , R. J. , Cocker , DI D. R. , Seinfeld , J. H. , and Dabdub , D . 1999b . Estimate of global atmospheric organic aerosol from oxidation of bio-genic hydrocarbons . Geophys. Res. Lett . 26 ( 17 ), 2721 – 2724 .  

  11. Guenther , A. B. , Zimmerman , P. R. , Harley , P. C. , Monson , R. K. , and Fall , R . 1993 . Isoprene and monoterpene emission rate variability: model evaluation and sensitivity analyses . J. Geophys. Res . 98 ( D7 ), 12609 – 12617 .  

  12. Guenther , A . 1997 . Seasonal and spatial variations in natural volatile organic compound emissions. Ecol . AppL 7 ( 1 ), 34 – 45 .  

  13. Haapanala , S. , Rinne , J. , Pystynen , K.-H. , Hellen , H. , Hakola , H. and co-authors. 2006. Measurements of hydrocarbon emissions from a boreal fen using the REA technique. Biogeosc. 3, 103 – 112.  

  14. Hakola , H. , Rinne , J. and Laurila , T . 1998 . The hydrocarbon emission rates of tea-leafed willow (Sal& phylicifolia), silver birch (Betula pen-dula) and European aspen (Populus tremula) . Atmos. Environ. 32 , 1825 – 1833 .  

  15. Hakola , H. , Laurila , T. , Rinne , J. and Puhto , K . 2000 . The ambient con-centrations of biogenic hydrocarbons at a northern European, boreal site . Atmos. Environ . 34 , 4971 – 4982 .  

  16. Hakola , H. , Laurila , T. , Lindfors , V. , Hellen , H. , Gaman , A. and co-authors. 2001. Variation of the VOC emission rates of birch species during the growing season. Boreal Env. Res. 6, 237 – 249.  

  17. Hakola , H. , Tarvainen , V. , Laurila , T. , Hiltunen , V. , Hellen , H. and co-authors. 2003. Seasonal variation of VOC concentrations above a bo-real coniferous forest . Atmos. Environ . 37 , 1623– 1634 .  

  18. Hakola , H. , Tarvainen , V. , Back , J. , Ranta , H. , Bonn , B. and co-authors. 2006. Seasonal variation of mono- and sesquiterpene emission rates of Scots pine. Biogeosc. 3, 93 – 101.  

  19. Hellen , H. , Hakola , H. , Pystynen , K.-H. , Rinne , J. and Haapanala , S . 2006 . C2-C10 hydrocarbon emissions from a boreal wetland and forest floor . Biogeosc . 3 , 167 – 174 .  

  20. Hoffmann , T. , Odum , J. R. , Bowman , F. , Collins , D. , Klockow , D. and co-authors. 1997. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 26, 189 – 222.  

  21. Janson , R. W . 1993 . Monoterpene emissions from Scots pine and Nor-wegian spruce . J. Geophys. Res . 98 ( D2 ), 2839 – 2850 .  

  22. Janson , R. and De Serves , C . 1998 . Isoprene emissions from bo-real wetlands in Scandinavia . J. Geophys. Res . 103 ( D19 ), 25513 – 25517 .  

  23. Janson , R. and De Serves , C . 2001 . Acetone and monoterpene emissions from the boreal forest in northern Europe . Atmos. Environ . 35 , 4629 – 4637 .  

  24. Janson , R. , De Serves , C. and Romero , R . 1999. Emission of isoprene and carbonyl compounds from a boreal forest and wetland in Sweden. Agric. Forest Met. 98-99, 671 – 681.  

  25. Jaoui , M. , Leungsakul , S. and Kamens , R. M . 2003 . Gas and particle products distribution from the reaction of fl-caryophyllene with ozone . J. Atmos. Chem . 45 , 261 – 287 .  

  26. Kanakidou , M. , Seinfeld , J. H. , Pandis , S. N. , Barnes , I. , Dentener , F. J and co-authors. 2005. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053 – 1123.  

  27. Komenda , M. and Koppmann , R . 2002 . Monoterpene emissions from Scots pine (Pinus sylvestris): Field studies of emission rate variabili-ties . J. Geophys. Res . 107 ( D13 ), 4161 , https://doi.org/10.1029/2001JD000691 .  

  28. Laurila , T. and Hakola , H . 1996 . Seasonal cycle of C2-05 hydrocarbons over the Baltic Sea and northern Finland . Atmos. Environ . 30 , 1597 – 1607 .  

  29. Laurila , T. and Lindfors , V. (eds.) 1999. Biogenic VOC emissions and photochemistry in the boreal regions of Europe, Air pollution research report No 70, Commission of the European Communities, Luxem-bourg, ISBN 92-828-6990-3.158.  

  30. Lindfors , V. and Laurila , T . 2000 . Biogenic volatile organic compound (VOC) emissions from forests in Finland . Boreal Environ. Res . 5 , 95 – 113 .  

  31. Lindfors , V. , Laurila , T. , Hakola , H. , Steinbrecher , R. and Rinne , J. 2000. Modeling speciated terpenoid emissions from the European boreal forest. Atmos. Environ. 34, 4983 – 4996.  

  32. Minlckinen , K. , Korhonen , R. , Savolainen , I. and Laine , J. 2002. Carbon balance and radiative forcing of Finnish peatlands 1900-2100 — the impact of forestry drainage. Global Change Biol. 8, 785 – 799.  

  33. Rinne , J. , Hakola , H. and Laurila , T. 1999. Vertical fluxes of monoter-penes above a Scots pine stand in the boreal vegetation zone. Phys. Chem. Earth (B) 24, 711 – 715.  

  34. Rinne , J. , Hakola , H. , Laurila , T. and Rannilc , U. 2000. Canopy scale monoterpene emissions of Pinus sylvestris dominated forests. Atmos. Environ. 34, 1099 – 1107.  

  35. Simpson , D. , Winiwarter , W. , Börjesson, G., Cinderby, S., Ferreiro, A. and co-authors. 1999. Inventorying emissions from nature in Europe. J. Geophys. Res . 104 ( D7 ), 8113 – 8152.  

  36. Solantie , R . 1990. The Climate of Finland in Relation to its Hydrology, Ecology and Culture. Finnish Meteorological Institute Contributions 2, Finnish Meteorological Institute, Helsinki, Finland, 130.  

  37. Spirig , C. , Guenther , A. , Greenberg , J. R , Calanca , P. and Tarvainen , V . 2004 . Tethered balloon measurements of biogenic volatile organic compounds at a Boreal forest site . Atmos. Chem. Phys . 4 , 215 – 229 .  

  38. Spirig , C. , Neftel , A. , Ammann , C. , Dommen , J. , Grabmer , W. and co-authors. 2005. Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry. Atmos. Chem. Phys. 5, 465 – 481.  

  39. Staudt , M. , Bertin , N. , Frenzel , B. and Seufert , G . 2000 . Seasonal vari-ation in amount and composition of monoterpenes emitted by young Pinus pinea trees — Implications for emission modelling . J. Atmos. Chem . 35 , 77 – 99 .  

  40. Steinbrecher , R. , Hauff , K. , Hakola , H. and Rössler, J. 1999. A revised parameterisation for emission modelling of isoprenoids for boreal plants. In: Biogenic VOC Emissions and Photochemistry in the Bo-real Regions of EUROPE, Air Pollution Research Report No 70 (eds.T. Laurila and V. Lindfors), Commission of the European Communities, Luxembourg, 29 – 43.  

  41. Tarvainen , V. , Hakola , H. , Hellen , H. , Back , J. , Han , P. and co-authors. 2005. Temperature and light dependence of the VOC emissions of Scots pine. Atmos. Chem. Phys. 5, 989 – 998.  

  42. Tunved , P. , Hansson, H.-C., Kerminen, V.-M., Strom, J., Dal Maso, M. and co-authors. 2006. High natural aerosol loading over Noreal forests. Science 312, 261 – 263.  

  43. Warneke , C. , Luxembourg , S. L. , de Gouw , J. A. , Rinne , H. J . I., Guen-ther, A. B. and co-authors. 2002. Disjunct eddy covariance measure-ments of oxygenated volatile organic compound fluxes from an al-falfa field before and after cutting. J. Geophys. Res . 107 ( D8 ), 4067, https://doi.org/10.1029/2001JDO00594 .  

comments powered by Disqus