Start Submission Become a Reviewer

Reading: Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique

Download

A- A+
Alt. Display

Original Research Papers

Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique

Authors:

Janne Rinne ,

Department of Physical Sciences, University of Helsinki, FI
X close

Terhi Riutta,

Department of Forest Ecology, University of Helsinki, FI
X close

Mari Pihlatie,

Department of Physical Sciences, University of Helsinki, FI
X close

Mika Aurela,

Climate and Global Change Research, Finnish Meteorological Institute, Helsinki, FI
X close

Sami Haapanala,

Department of Physical Sciences, University of Helsinki, FI
X close

Juha-Pekka Tuovinen,

Climate and Global Change Research, Finnish Meteorological Institute, Helsinki, FI
X close

Eeva-Stiina Tuittila,

Department of Forest Ecology, University of Helsinki, FI
X close

Timo Vesala

Department of Physical Sciences, University of Helsinki, FI
X close

Abstract

The northern wetlands are one of the major sources of methane into the atmosphere. We measured annual methane emission from a boreal minerotrophic fen, Siikaneva, by the eddy covariance method. The average wintertime emissions were below 1 mg m-2 h-1, and the summertime emissions about 3.5 mg m-2 h-1. The water table depth did have any clear effect on methane emissions. During most of the year the emission depended on the temperature of peat below the water table. However, during the high and late summer the emission was independent on peat temperature as well. No diurnal cycle of methane flux was found. The total annual emission from the Siikaneva site was 12.6 g m-2. The emissions of the snow free period contributed 91% to the annual emission. The emission pulse during the snow melting period was clearly detectable but of minor importance adding only less than 3% to the annual emission. Over 20% of the carbon assimilated during the year as carbon dioxide was emitted as methane. Thus methane emission is an important component of the carbon balance of the Siikaneva fen. This indicates need of taking methane into account when studying carbon balances of northern fen ecosystems.

How to Cite: Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J.-P., Tuittila, E.-S. and Vesala, T., 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B: Chemical and Physical Meteorology, 59(3), pp.449–457. DOI: http://doi.org/10.1111/j.1600-0889.2007.00261.x
8
Views
4
Downloads
  Published on 01 Jan 2007
 Accepted on 25 Oct 2006            Submitted on 28 Apr 2006

References

  1. Albritton , D. , Derwent , D. , Isaksen , I. , Lal , M. and Wuebbles , D. 1996. Radiative forcing of climate change: Trace gas radiative forcing indices. In: Intergovernmental Panel on Climate Change: Climate Change 1995 (eds J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and co-authors). Contribution of the Work-ing group Ito the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press , Cambridge , UK.  

  2. Aurela , M. , Laurila , T. and Tuovinen , J.-P . 2001 . Seasonal CO2 balances of a sub-arctic mire . J. Geophys. Res . 106 , 1623 – 1637 .  

  3. Aurela , M. , Laurila , T. and Tuovinen , J.-P . 2004 . The timing of snow melt controls the annual CO2 balance in a subarctic fen . Geophys. Res. Lett . 31 , L16119 , https://doi.org/10.1029/2004GL020315 .  

  4. Bergman , I. , Svensson , B. H. and Nilsson , M. 1998. Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biol. Biochem. 30, 729 – 741.  

  5. Botch , M. S. , Kobak , K. I. , Vinson , T. S. and Kolchugina , T. P. 1995. Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochem. Cycles 9, 37 – 46.  

  6. Bubier , J. , Moore , T. , Savage , K. and Crill , P . 2005. A comparison of methane flux in a boreal landscape between dry and a wet year. Global Biogeochem. Cycles 19, GB1023.  

  7. Chanton , J. P. , Bauer , J. E. , Glaser , P. A. , Siegel , D. I. , Kelley , C. A. , Tyler , S. C. ,Romanowicz, E. H. and Lazrus, A. 1995. Radiocarbon evidence for the substrates supporting methane formation within northern Min-nesota peatlands. Geochima et Cosmochimica Acta. 17 , 3663 – 3668. Chasar, L. S., Chanton, J. P., Glaser, P. H. and Siegel, D. I. 2000. Methane concentration and stable isotope distribution as evidence of rhizo-spheric processes: Comparison of a fen and bog in the Glacial Lake Agassiz Peatland complex. Ann. BoL 86, 655 – 663.  

  8. Corradi , C. , Kolle, 0., Walter, K., Zimov, S. A. and Schulze, E.-D. 2005. Carbon dioxide and methane exchange of a north-east Siberian tussock tundra . Global Change Biol . 11 , 1910– 1925 .  

  9. Ding , W. X. , Cai , Z. C. and Tsuruta , H . 2004 . Methane concentration and emission as affected by methane transport capacity of plants in freshwater marsh . Water Air Soil PolluL 158 , 99 – 111 .  

  10. Dlugokencky , E. J. , Houweling , S. , Bruhwiler , L. , Masarie , K. A. , Lang , P. M. and co-authors 2003. Atmospheric methane levels off: Temporary pause or a new steady-state? Geophys. Res. Lett. 30, https://doi.org/10.1029/2003GL018126 .  

  11. Drebs , A. , Nordlund , A. , Karlsson , P. , Helminen , J. and Rissanen , P . 2002. Climatological statistics of Finland 1971-2000. Finnish Mete-orological Institute, Helsinki, 99 ISBN 951-697-568-2.  

  12. Dunfield , R , Knowles , R. , Dumont , R. and Moore , T. R . 1993 . Methane production and consumption in temperate and sub-arctic peat soils - response to temperature and Ph. Soil Biol. Biochem. 25 , 321 – 326. Frenzel, P. and Rudolph, J. 1998. Methane emission from a wetland plant: The role of CH4 oxidation in Eriophorum. Plant Soil 202 , 27 – 32. Frollcing, S., Roulet, N. and Fuglestvedt, J. 2006. How northern peatlands influence the Earth's radiative budget: Sustained methane emission versus sustained carbon sequestration. J. Geophys. Res . 111 , G01008 , https://doi.org/10.1029/2005JG000091 .  

  13. Gore , A. P. J. (ed.) 1983 . Ecosystems of the World 4b Mires: Swamp, bog, fen and moor -Regional studies . Elsevier , Amsterdam .  

  14. Harding , R. J. , Gryning , S.-E. , Halldin , S. and Lloyd , C. R . 2001 . Progress in understanding of land surface/atmosphere exchanges at high lati-tudes . Theor. AppL ClimatoL 70 , 5 – 18 .  

  15. Hargreaves , K. J. and Fowler , D . 1998 . Quantifying the effects of wa-ter table and soil temperature on the emission of methane from peat wetland at the field scale. Atmos. Environ. 32 , 3275 – 3282. Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R. and Aurela, M. 2001. Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements . Theor AppL ClimatoL 70 , 203 – 213 .  

  16. Houghton , J. T. , Meira Filho , L. G. , Callander , B. A. , Harris , N. , Kattenberg , A. and co-authors (eds). 1996. Climate Change 1995 - The Science of Climate Change, Contribution of WGI to the Second As-sessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press , Cambridge , UK. ISBN 0-521-56433-6. 572.  

  17. Huttunen , J. T. , Nykänen , H. , Turunen , J. and Martilcainen , P. J . 2003 . Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia . Atmos. Environ . 37 , 147 – 151 .  

  18. Ingram , H. A . P. 1983. Hydrology. In: Ecosystems of the World 4A Mires: Swamp, Bog, Fen and Moor General Studies (edA. J. P. Gore), Elsevier, Amsterdam, 67 – 158.  

  19. Joiner , D. W. , Lafleur , P.M. , McCaughey , J. H. and Bartlett , P. A. 1999. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J. Geophys. Res . 104 , 27663 – 27672.  

  20. Kim , J. , Verma , S. B. and Billesbach , D. P . 1998a . Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant mediated transport . Global Change Biol . 5 , 433 – 440 .  

  21. Kim , J. , Verma , S. B. , Billesbach , D. P. and Clement , R. J . 1998b . Diel variation in methane emission from a midlatitude prairie wet-land: Significance of convective throughflow in Phraghmites australis . J. Geophys. Res . 103 , 28029 – 28039 .  

  22. Kormann , R. , Muller , H. and Werle , P. 2001. Ed dy flux measurements of methane over the fen “Murnauer Moos”, 11'1 l'E, 47°39'N , using a fast tunable diode laser spectrometer. Atmos. Environ . 35 , 2533 – 2544 .  

  23. Laurila , T. , Tuovinen , J.-R , Lohila , A. , Hatalcica , J. , Aurela , M. , and co-authors. 2005. Measuring methane emissions from a landfill using a cost-effective micrometeorological method. Geophysical Res. Lett. 32, L19808, https://doi.org/10.1029/2005GL023462 .  

  24. Le Mer , J. and Roger , P . 2001 . Production, oxidation, emission and consumption of methane by soils: A review . Eur J. Soil Biol . 37 , 25 – 50 .  

  25. Metje , M. and Frenzel , P . 2005 . Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a north-ern wetland . Appl Environ Microbiol 71 , 8191 – 8200 .  

  26. Minklcinen , K. , Korhonen , R. , Savolainen , I. and Laine , J . 2002 . Carbon balance and radiative forcing of Finnish peatlands 1900-2100 - the impact of forestry drainage. Global Change Biol. 8 , 785 – 799. Moore, T., Roulet, N. T. and Knowles, R. 1990. Spatial and temporal variations of methane flux from subarctic/northern boreal fens . Global Biogeochem. Cycles 4 , 29 – 46 .  

  27. Nordstroem , C. , Soegaard , H. , Christensen , T. R. , Friborg , T. and Hansen , B. U . 2001 . Seasonal carbon dioxide balance and respiration of a high-arctic fen ecosystem in NE-Greenland . Theor AppL ClimatoL 70 , 149 – 166 .  

  28. Nozhevnikova , A. N. , Simankova , M. V. , Parshina , S. N. and Kot-syurbenko, 0. R. 2001. Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments. Wa-ter Sci TechnoL 44, 41 – 48.  

  29. Pearce , D. M. E. and Clymo , R. S . 2001 . Methane oxidation in a peatland core . Global Biogeochem. Cycles 15 , 709 – 720 .  

  30. Popp , T. J. , Chanton , J. P. , Whiting , G. J. and Grant , N . 1999 . Methane stable isotope distribution at a Carex dominated fen in north central Alberta . Global Biogeochemical Cycles 13 , 1063 – 1077 .  

  31. Prather , M. , Derwent , R. , Ehhalt , D. , Fraser , P. , Sanhueza , E. and co-authors. 1995. Other trace gases and Atmospheric Chemistry. In: Cli-mate Change 1994, Radiative Forcing of Climate Change and Eval-uation of the IPCC IS92 Emission Scenarios (ed Houghton, J and co-authors), Cambridge University Press , Cambridge , UK, 77-126. ISBN 0-521-55962-6.  

  32. Saarinen , T . 1996 . Biomass and production of two vascular plants in a boreal mesotrophic fen . Can. J. BoL 74 , 934 – 938 .  

  33. Schutz , H. , Schröder , P. and Rennenberg , H . 1991. Role of plants in regulating the methane flux to the atmosphere. In: Trace Gas Emissions by Plants (eds T. D. Sharkey, E. A. Holland and H. A. Mooney), Academic Press Inc., New York, 29 – 91.  

  34. Shannon , R. D. and White , J. R . 1994 . 3-Year study of controls on methane emissions from 2 Michigan peatlands . Biogeochemistiy 27 , 35 – 60 .  

  35. Shannon , R. D. , White , J. R. , Lawson , J. E. and Gilmour , B. S . 1996 . Methane efflux from emergent vegetation in peatlands . J. EcoL 84 , 239 – 246 .  

  36. Solantie , R . 1990. The climate of Finland in Relation to Its Hydrology, Ecology and Culture. Contributions, 2, Finnish Meteorological Insti-tute, Helsinki.  

  37. Suyker , A. E. , Verma , S. B. , Clement , R. J. and Billesbach , D. P . 1996 . Methane flux in a boreal fen: Season-long measurement by eddy cor-relation . J. Geophys. Res . 101 , 28637 – 28647 .  

  38. Suyker , A. E. , Verma , S. B. and Arkebauer , T. J . 1997 . Season-long measurement of carbon dioxide exchange in a boreal fen . J. Geophys. Res . 102 , 29021 – 29028 .  

  39. Wagner , D. , Lipslci , A. , Embacher , A. and Gattinger , A . 2005 . Methane fluxes in permafrost habitats of the Lena Delta: Effects of microbial community structure and organic matter quality . Environ. MicrobioL 7 , 1582 – 1592 .  

  40. Whalen , S. C . 2005 . Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ. Eng. Sci. 22 , 73 – 94. Whiting, G. J. and Chanton, J. P. 2001. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration . Tellus 53B , 521 – 528 .  

  41. Wilson , D. , Alm , J. , Riutta , T. , Laine , J. , Byrne , K. A. and co-authors. 2006. A high resolution green area index for modeling the seasonal dynamics of CO2 exchange in peatland vascular plant communities. Plant Ecol., DOI https://doi.org/10.1007/s11258-006-9189-1.  

  42. Wuebbles , D. , J. and Hayhoe, K. 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57, 177 – 210.  

comments powered by Disqus