Start Submission Become a Reviewer

Reading: Simulation of nitrate aerosol concentrations over East Asia with the model system RAMS-CMAQ

Download

A- A+
Alt. Display

Original Research Papers

Simulation of nitrate aerosol concentrations over East Asia with the model system RAMS-CMAQ

Authors:

Meigen Zhang ,

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, CN
X close

Lijie Gao,

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029; Graduate School of the Chinese Academy of Sicences, Beijing 100049, CN
X close

Cui Ge,

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029; Graduate School of the Chinese Academy of Sicences, Beijing 100049, CN
X close

Youping Xu

Beijing Institute of Applied Meteorology, Beijing 100029; Graduate School of the Chinese Academy of Sicences, Beijing 100049, CN
X close

Abstract

The Models-3 Community Multi-scale Air Quality modeling system (CMAQ) coupled with the Regional Atmospheric Modeling System (RAMS) is used to analyse the geographical and the seasonal characteristics of nitrate aerosol (ANO3) concentration distributions over East Asia. Three-dimensional concentrations in January, March, April, July and October of 2001 are simulated, and for the evaluation of model performances, the simulated values of wind direction, wind speed, temperature, specific humidity, nitric oxide (NO), nitrogen oxide (NO2), ANO3 and ammonium aerosol (ANH4) are compared with the observational data obtained onboard the P-3B aircraft during its four consecutive flights over the South China Sea, the East China Sea, the Yellow Sea and the water areas to the east of Japan conducted on 13, 17, 18 and 21 March 2001. The observed data are 5-min averaged and the model results with a 1-hour temporal resolution are interpolated to the aircraft location and time using trilinear interpolation. Comparison shows that the observed values exhibit strong temporo-spatial variations, and the model reproduces these variations reasonably well. The simulated values of wind direction, wind speed, temperature and specific humidity are generally in good agreement with the observed ones, their correlation coefficients reach 0.66, 0.94, 0.99 and 0.96, respectively. Comparison also shows that the average mixing ratios of modelled and observed NO, NO2, ANO3 and ANH4 agree reasonably well with each other, the correlation coefficient for ANO3 and ANH4 are larger than 0.8, but the simulated standard deviations are smaller than the observed one, and the correlation coefficient for NO and NO2 are 0.48 and 0.44.

Analysis of horizontal distributions of monthly averaged ANO3 concentrations in the boundary layer indicates that the ANO3 mixing ratios have noticeable differences among the four seasons. Generally the concentrations are high in the winter, spring and fall and low in the summer, and seasonal variations are typically strongest over China and Japan. Highest concentrations are found over eastern China where emissions of nitrogen oxides and ammonia are high and long-range transport may cause elevated concentrations in remote areas under favourable meteorological conditions, but the seasonal variation in the ANO3 concentrations is heavily influenced by the changes in precipitation and temperature.

How to Cite: Zhang, M., Gao, L., Ge, C. and Xu, Y., 2007. Simulation of nitrate aerosol concentrations over East Asia with the model system RAMS-CMAQ. Tellus B: Chemical and Physical Meteorology, 59(3), pp.372–380. DOI: http://doi.org/10.1111/j.1600-0889.2007.00255.x
1
Views
  Published on 01 Jan 2007
 Accepted on 1 Nov 2006            Submitted on 25 Apr 2006

References

  1. AQEG (Air Quality Expert Group) , 2005. Particulate Matter in the United Kingdom. Department of Environment, Food and Rural Affairs (DEFRA), London, UK. pp. 444 (available on-line at: http://www.defra.gov.uldenvironment/airquality/aqeg).  

  2. Benkovitz , C. M. , Schultz , M. T. , Pacyna , J. , Tarrason , L. , Dignon , J. , Voldner , E. C. , Spiro , P. A. , Logan , J. A. and Graedel , T. E . 1996 . Global gridded inventories of anthropogenic emissions of sulfur and nitrogen . J. Geophys. Res . 101 , 29239 – 29253 .  

  3. Binkowski , F. S. and Shankar , U . 1995 . The regional particulate matter model: 1. Model description and preliminary results . J. Geophys. Res . 100 , 26191 – 26209 .  

  4. Byun , D. W. and Ching , J. K. S . 1999 . Science algorithms of the EPA Models-3 community multi-scale air quality (CMAQ) modeling sys-tem . NERL, Research Triangle Park , NC .  

  5. Cox , R. , Bauer , B. L. and Smith , T . 1998 . A mesoscale model intercom-parison . Bulletin American MeteoroL Soc . 79 , 265 – 283 .  

  6. Dentener , F. J. and Crutzen , P. J . 1993 . Reaction of N205 on tropospheric aerosols: Impact on the global distributions of NOR, 03, and OH . J. Geophys. Res . 98 , 7149 – 7163  

  7. Ding , Y . 1994 . The winter monsoon in East Asia . Chapter 2 in Monsoons Over China. Kluwer Academic Publishers , Dordrecht , 91 – 173 .  

  8. Han , Z. , Ueda , H. and Matsuda , K . 2005 . Model study of the impact of biogenic emission on regional ozone and the effectiveness of emission reduction scenarios over eastern China . Tellus 57B , 12 – 27 .  

  9. IPCC (International Panel of Climate Change) , 2001 . Climate Change 2001: The Scientific Basis . Cambridge University Press , New York .  

  10. Jacob , D. J. , Crawford , J. H. and co-authors. 2003. Transport and Chem-ical Evolution over the Pacific (TRACE-P) aircraft mission: De-sign, execution, and first results. J. Geophys. Res . 108 ( D20 ), 9000, https://doi.org/10.1029/2002J1D003276 .  

  11. Kato , N. and Akimoto , H . 1992 . Anthropogenic emissions of SO2 and NO in Asia: Emission inventories . Atmos. Environ . 26A , 2997 – 3017 .  

  12. Kim , J. and Cho , S.-Y . 2003 . A numerical simulation of present and future acid deposition in North East Asia using a comprehensive acid deposition model . Atmos. Environ . 37 , 3375 – 3383 .  

  13. Kim , Y. P. , Seinfeld , J. H. and Saxena , P . 1993 . Atmospheric gas-aerosol equilibrium: Thermodynamic model . Aerosol. Sci. TechnoL 19 , 157 – 181 .  

  14. Mozurkewich , M . 1993 . The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity, and particle size . Atmos. Environ . 27A , 261 – 270 .  

  15. Olivier , J. G. J. , Bouwman , A. F. , Van der Maas , C. W. M. , Berdowslci , J. J. M. , Veldt , C. and co-authors. 1996. Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1° x 1° grid, Report no. 771060 002. National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands.  

  16. Pielke , R. A. , Cotton , W. R. , Walko , R. L. , Tremback , C. J. , Lyons , W. A. and co-authors. 1992. A comprehensive meteorological modeling system - RAMS. MeteoroL Atmos. Phys. 49, 69 – 91.  

  17. Schaap , M. , Muller , K. and ten Brink , H. M . 2002 . Constructing the European aerosol nitrate concentration field from quality analysed data . Atmos. Environ . 36 ( 8 ), 1323 – 1335 .  

  18. Schaap , M. , van Loon , M. , ten Brink , H. M. , Dentener , F. J. and Builtjes , P. J. H . 2003 . The nitrate aerosol field over Europe: simulations with an atmospheric chemistry-transport model of intermediate complexity . Atmos. Chem. Phys. Discuss . 3 , 5919 – 5976 .  

  19. Stockwell , W. R. , Middleton , P. , Chang , J. S. and Tang , X . 1990 . The second generation regional acid deposition model chemical mecha-nism for regional air quality modeling . J. Geophys. Res . 95 , 16343 – 16367 .  

  20. Streets , D. G. and Waldhoff , S. T . 2000 . Present and future emissions of air pollutants in China: SO2, NO and CO . Atmos. Environ . 34 , 363 – 374 .  

  21. Streets , D. G. , Bond , T. C. , Carmichael , G. R. , Fermandes , S. , Fu , Q. and co-authors. 2003. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res . 108 ( D21 ), 8809, https://doi.org/10.1029/2002JD003093 .  

  22. Turnbull , A. B. and Harrison , R. M . 2000 . Major component contribu-tions to PM10 composition in the UK atmosphere . Atmos. Environ . 34 , 3129 – 3137 .  

  23. Van Aardenne , J. A. , Carmichael , G. R. , Levy II , H. , Streets , D. and Hordjik, L. 1999. Anthropogenic NO emissions in Asia in the period 1990-2020. Atmos. Environ. 33, 633 – 646.  

  24. Xie , M . 2002. The basic feature research of acid rain pollution in Guangzhou area between 1996 and 2000. Res. Environ. Sci. 15 ( 1 ), 31-33. (in Chinese)  

  25. Yu , R. , Su , Y. and Li , Z . 2003. Analysis of feature of acid rain pollution and its formation cause in Fuzhou. Fujian Geography 18 ( 2 ), 23-25. (in Chinese)  

  26. Zhang , M. , Uno , I. , Zhang , R. , Han , Z. , Wang , Z. and Pu , Y . 2006 . Eval-uation of the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with observations obtained during the TRACE-P experiment: Comparison of ozone and its related species . Atmos. En-viron . 40 ( 26 ), 4874 – 4882 .  

  27. Zhang , M. , Uno , I. , Carmichael , G. R. , Alcimoto , H. , Wang , Z. and co-authors. 2003. Large-scale structure of trace gas and aerosol distribu-tions over the western Pacific Ocean during TRACE-P. J. Geophys. Res . 108 ( D21 ), 8820, https://doi.org/10.1029/2002JD002946 .  

  28. Zhang , M. , Uno , I. , Yoshida , Y. , Xu , Y. , Wang , Z. and co-authors. 2004. Transport and Transformation of Sulfur compounds over East Asia during the TRACE-P and ACE-Asia Campaigns . Atmos. Environ . 38 ( 40 ), 6947-6959 .  

comments powered by Disqus