Start Submission Become a Reviewer

Reading: Soil NO emissions modelling using artificial neural network

Download

A- A+
Alt. Display

Original Research Papers

Soil NO emissions modelling using artificial neural network

Authors:

Claire Delon ,

Laboratoire d’Aérologie, 14 avenue E. Belin, 31400 Toulouse, FR
X close

Dominique Serça,

Laboratoire d’Aérologie, 14 avenue E. Belin, 31400 Toulouse, FR
X close

Christophe Boissard,

Laboratoire Interuniversitaire des Systèmes Atmosphériques, 94010 Créteil, FR
X close

Richard Dupont,

Laboratoire d’Aérologie, 14 avenue E. Belin, 31400 Toulouse, FR
X close

Alain Dutot,

Laboratoire Interuniversitaire des Systèmes Atmosphériques, 94010 Créteil, FR
X close

Patricia Laville,

INRA, EGC, 78830 Thiverval-Grignon, FR
X close

Patricia De Rosnay,

CESBIO, 31400 Toulouse, FR
X close

Robert Delmas

Laboratoire d’Aérologie, 14 avenue E. Belin, 31400 Toulouse, FR
X close

Abstract

The biogenic volatile organic compound emissions in the south boreal, middle boreal and north boreal vegetation zones in Finland were calculated utilizing satellite land cover information and actual meteorological data in a BEIS-type canopy emission model. The sesquiterpene emissions from the boreal forest were estimated for the first time, and the inventory was further complemented by the inclusion of wetland isoprene emissions from open fens. Recently published results from emission measurements carried out in various parts of the boreal region were utilized in the compilation of the standard emission potentials and monoterpene emission spectra for the deciduous and coniferous forest categories and wetlands. The average annual isoprene emission fluxes from forests were 73, 56 and 45, and those of monoterpenes 657, 567 and 342 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The average annual sesquiterpene fluxes were of the same order of magnitude as isoprene, being 54, 46 and 26 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The isoprene emissions from wetlands were significant, contributing 3%, 18% and 31% of the annual isoprene emissions in the south boreal, middle boreal and north boreal vegetation zones, respectively. Throughout the boreal region, the main emitted monoterpenes were α-pinene and Δ3-carene, with significant contributions from β-pinene and sabinene in summer and autumn. Due to the new seasonal emission potentials of the coniferous species introduced in this work, the overwhelming role of spruce as the main isoprene and monoterpene emitter in the boreal forest is subdued. The new emission inventory also accentuates the role of the boreal deciduous trees as terpenoid emitters in the late summer months.

How to Cite: Delon, C., Serça, D., Boissard, C., Dupont, R., Dutot, A., Laville, P., De Rosnay, P. and Delmas, R., 2007. Soil NO emissions modelling using artificial neural network. Tellus B: Chemical and Physical Meteorology, 59(3), pp.502–513. DOI: http://doi.org/10.1111/j.1600-0889.2007.00254.x
1
Views
1
Downloads
  Published on 01 Jan 2007
 Accepted on 25 Oct 2006            Submitted on 27 Apr 2006

References

  1. Anderson , I. C. , Levine , J. S. , Poth , M. A. and Riggan , P. J . 1988 . Enhanced biogenic emissions of nitric oxide and nitrous oxide fol-lowing surface biomass burning . J. Geophys. Res . 93 ( D4 ), 3893 – 3898 .  

  2. Austin , A. T. , Yahdjian , L. , Stark , J. M. , Belnap , J. , Porporato , A. and co-authors. 2004. Water pulses and biogeochemical cycles in arid and semi arid ecosystems. Oecologia 141, 221 – 235.  

  3. Bertram , T. H. , Heckel , A. , Richter , A. , Burrows , J. P and Cohen, R. C. 2005. Satellite measurements of daily variations in soil NOx emis-sions. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL024640 .  

  4. Bouwman , A. E , Boumans , L. J. M. and Batjes , N. H . 2002a . Emissions of N20 and NO from fertilized fields: Summary of available measurement data . Global Biogeochem. Cycles 16 , 1058 , https://doi.org/10.1029/2001GB001811 .  

  5. Bouwman , A. F. , Boumans , L. J. M. and Batjes , N. H . 2002b . Modeling global annual N20 and NO emissions from fertilized fields . Global Biogeochem. Cycles 16 , 1080 , https://doi.org/10.1029/2001GB001812 .  

  6. Breuer , L. , Papen , H. and Butterbach-Bahl , K . 2000. N20 emission from tropical forest soils of Australia. J. Geophys. Res . 105 ( D21 ), 26 353-26 367.  

  7. Butterbach-Bahl , K. , Stange , F. , Papen , H. and Li , C . 2001. Regional inventory of nitric oxide and nitrous axide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J. Geophys. Res . 106 , 34155 – 34166.  

  8. Butterbach-Bahl , K. , Kock , M. , Willibald , G. , Hewett , B. , Buhagiar , S. , Papen and co-authors. 2004. Temporal variations of fluxes of NO, NO2, N20, CO2 and CH4 in a tropical rain forest ecosystem. Global Biogeochem. Cycles 18, GB3012, https://doi.org/10.1029/2004GB002243 .  

  9. Cardenas , L. , Rondon , A. , Johansson , C. and Sanhueza , E . 1993. Effects of soil moisture, temperature and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soils. J. Geophys. Res . 98 , 14783 – 14790.  

  10. Conrad , R . 1996 . Soil microorganisms as controllers of atmospheric trace gases (H2, CH4, OCS, N20 and NO) . MicrobioL.Rev . 60 , 609 – 640 .  

  11. Davidson , E. A . 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes (eds. J. E. Rogers and W. B. Whitman ) American Society for Micro-biology, Washington, 219 – 235.  

  12. Davidson , E. A. and Kingerlee , W . 1997 . A global inventory of nitric oxide emissions from soils . Nutr CycL Agroecosyst . 48 , 37 – 50 .  

  13. Delmas , R. , Serya , D. and Jambert , C. 1997. Global inventory of NOx sources. Nutr CycL Agroecosyst. 48, 51 – 60.  

  14. Diallo , A. and Gjessing , J . 1999 . Natural resources management: Morpho-pedology in Gourma region . SSE Research program Mali-Norway (in French ), CNRST-IER-Oslo University (Norway ).  

  15. Dutot , A. , Rude , J. and Aumont , B . 2003 . Neural network method to estimate the aqueous rate constants for the OH reactions with organic compounds . Atmos. Environ . 37 , 269 – 276 .  

  16. Dreyfus , G. , Martinez , J. M. , Samuelides , M. , Gordon , M. B. , Badran , F. , Thiria , S. and co-authors. 2002. In: Neural Networks. Methodology and applications (In French). Eyrolles, Paris.  

  17. Ganzeveld , L. N. , Lelieveld , J. , Dentener , F. J. , Krol , M. C. , Bouwman , A. J. and co-authors. 2002. Global soil-biogenic emis-sions and the role of canopy processes. J. Geophys. Res . 107 ( D16 ), https://doi.org/10.1029/20011JD001289.  

  18. Gardner , M. W. and Dorling , S. R . 1998 . Artificial neural networks (The multilayer Perceptron)- A review of applications in the atmospheric sciences . Atmos. Environ . 32 , 2627 – 2636 .  

  19. Gardner , M. W. and Dorling , S. R . 1999 . Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London . Atmos. Environ . 33 , 709 – 719 .  

  20. Horii , C. V , Munger , J. W. , Wofsy , S. C. , Zahniser , M. , Nelson , D. and co-authors. 2004. Fluxes of nitrogen oxides over a temperate deciduous forest. J. Geophys. Res . 109 , D08305, https://doi.org/10.1029/2003JDO04326 .  

  21. Hsieh , W. W. and Tang , B . 1998 . Applying neural network models to prediction and data analysis in meteorology and oceanography . Bull. of the American Meteorological Society 79 , 1855 – 1869 .  

  22. Jaegle , L. , Martin , R. V. , Chance , K. , Steinberger , L. , Kurosu , T. P. and co-authors. 2004. Satellite mapping of rain-induced nitric oxide emissions from soils. J. Geophys. Res . 109 , https://doi.org/10.1029/2003JD004406 .  

  23. Johansson , C. , Rodhe , H. and Sanhueza , E . 1988 . Emission of NO in a tropical savanna and a cloud forest during the dry season . J. Geophys. Res . 93 , 7180 – 7192 .  

  24. Kesilc , M. , Ambus , P. , Baritz , R. , Briiggemann , N. , Butterbach-Bahl, K. and co-authors. 2005. Inventories of N20 and NO emissions from European forest soils Biogeosciences 2, 353 – 375.  

  25. Kiese , R. , Li , C. , Hilbert , D. W. , Papen , H. and Butterbach-Bahl , K . 2005 . Regional application of PnET-N-DNDC for estimating the N20 source strength of tropical rainforests in Wet Tropics of Australia . Global Change Biol . 11 ( 1 ), 128 – 144 .  

  26. Kullback , S. and Leibler , R . 1951 . On information and sufficiency . Ann. Math. Stat . 22 , 79 – 86 .  

  27. Kullback , S . 1959 . Statistics and Information Theory . Dover Publica-tions , New York .  

  28. Laville , P. , Henault , C. , Gabrielle , B. and Serya , D . 2005 . Measurement and modelling of NO fluxes over maize and wheat crops during their growing seasons: effect of crop management . Nutr. CycL Agroecosyst . 72 , 159 – 171 .  

  29. Le Roux , X. , Abbadie , L. , Lensi , R. and Serya , D . 1995 . Emission of nitrogen monoxide from African tropical ecosystems: control of emis-sion by soil characteristics in humid and dry savannas of West Africa . J. Geophys. Res . 9100 , 23133 – 23142 .  

  30. Li , C. , Aber , J. , Stange , F. , Butterbach-Bahl, K. and Papen, H. 2000. A process-oriented model of N20 and NO emissions from forest soils: 1. Model development. J. Geophys. Res . 105 , 4369 – 4384.  

  31. Ludwig , J Meixner, F. X., Vogel, B. and Förstner, J. 2001. Soil-air exchange fo nitric oxide: An overview of processes, environmental factors, and modelling studies. Biogeochemistiy 52, 225 – 257.  

  32. Martin , R. E. , Scholes , M. C. , Mosier , A. R. , Ojima , D. S. , Holland , E. A. and co-authors. 1998. Controls on annual emissions of nitric oxide from soils of the Colorado shortgrass steppe. Global Biogeochem. Cycles 12, 81 – 91.  

  33. Meixner , E X. and Yang , W. X . 2004 . Biogenic emissions of nitric oxide and nitrous oxide from arid and semi-arid land. Thyland Ecohydrology (eds. P. D'Odorico and A. Porporato). Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, pp. 23-46. J. 1992. Geographical distribution and seasonal variation of sur-face emissions and deposition velocities of atmospheric trace gases . J. Geophys. Res . 97 , 3787 – 3804 .  

  34. Navone , H. D. and Ceccatto , H. A . 1994 . Predicting Indian monsoon rainfall: a neural network approach. Clim. Dyn. 10 , 305 – 312. Ormeci, B., Sanin, S. L. and Pierce, J. J. 1999. Laboratory study of NO flux from agricultural soil: effects of soil moisture, pH and tempera-ture . J. Geophys. Res . 104 , 1621 – 1629 .  

  35. Otter , L. B. , Yang , W. X. , Scholes , M. C. and Meixner , F. X. 1999. Nitric oxide emissions from a Southern African Savanna. J. Geophys. Res . 104 , 18471 – 18485.  

  36. Parsons , D. A . B., Scholes, M. C., Scholes, R. J. and Levine, J. S. 1996. Biogenic NO emissions from savanna soils as a function of fire regime, soil type, soil nitrogen and water status. J. Geophys. Res . 101 , 23683 – 23688.  

  37. Parton , W. J., Holland, E. E., Del Grosso, J., Hartman, M. D., Martin, R. E. and co-authors. 2001. Generalized model for NOx and N20 emissions from soils. J. Geophys. Res . 106 , 17403 – 17419.  

  38. Potter , C. S. , Matson , P. A. , Vitousek , P. M. and Davidson, E. A. 1996. Process modelling of controls on nitrogen trace gas emissions from soils worldwide. J. Geophys. Res . 101 , 1361 – 1377.  

  39. Reiners , W. A. , Liu , S. , Gerow , K. G. , Keller , M. and Schimel , D. S . 2002 . Historical and future land use effects on N20 and NO emissions using an ensemble modelling approach: Costa Rica's Car-ribean lowlands as an example . Global Biogeochem. Cycles 16 , 1068 , https://doi.org/10.1029/2001GB001437 .  

  40. Roelle , P. A. , Aneja , V. P. , Gay , B. , Geron , C. and Pierce , T. 2001. Biogenic nitric oxide emissions from cropland soils. Atmos. Environ. 35, 115 – 124.  

  41. Roelle , P. A. , Aneja , V. P. , Mathur , R. , Vukovich, J. and Peirce, J. 2002. Modeling nitric oxide emissions from biosolid amended soils. Atmos. Environ. 36, 5687 – 5696.  

  42. Sanhueza , E. , Hao , W. M. , Scharffe , D. , Donoso , L. and Crutzen , P. J. 1990. N20 and NO emissions from soils of the Northern part of the Guyana Shield, Venezuela. J. Geophys. Res . 95 , 22481 – 22488.  

  43. Schindlbacher , A. , Zeichmeister-Boltenstern , S. and Butterbach-Bahl , K . 2004 . Effects of soil moisture and temperature on NO, NO2 and N20 emissions from European forest soils . J. Geophys. Res . 109 , D17302 , https://doi.org/10.1029/2004JD004590 .  

  44. Schlecht , E. , Fernandez-Rivera , S. and Hiernaux , P . 1997 . Timing, size and nitrogen concentration of faecal and urinary excretions in cat-tle, sheep and goats: Can they be exploited for better manuring of cropland? In: Soil Fertility Management in West African Land Use Ssytems (eds . G. Renard, A. Neef, K. Becker and M. von Oppen), Margarf Verlag, Niamey, Niger, Weikersheim , Germany .  

  45. Schlecht , E. and Hiernaux , P . 2004 . Beyond adding up inputs and outputs: process assessment and upscaling in modelling nutrient flows . Nutr CycL AgroecosysL 70 , 303 – 319 .  

  46. Serya , D. , Delmas , R. , Jambert , C. and Labroue , L . 1994 . Emissions of nitrogen oxides from equatorial rain forest in central Africa: ori-gin and regulation of NO emissions from soils . Tellus 46B , 243 – 254 .  

  47. Serya , D. , Delmas , R. , Le Roux , X. , Parsons , D. A. B. , Scholes , M. C. , Abbadie , L. and co-authors. 1998. Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire. Global Biogeochem. Cycles 12, 637 – 651.  

  48. Shepherd , M. E , Barzetti , S. and Hastie , D. R . 1991 . The production of atmospheric NOx and N20 from a fertilized agricultural soil . Atmos. Environ . 25A , 1961 – 1969 .  

  49. Slciba , U. , Hargreaves , K . J., Fowler, D. and Smith, K. A. 1992. Fluxes of nitric and nitrous oxides from agricultural soils in a cool temperate climate. Atmos. Environ. 26A, 2477 – 2488.  

  50. Van Dijk , S. and Meixner , E 2001 . Production and consumption of NO in forest and pasture soils from the Amazon basin . Water Air, and Soil Pollution 1 , 119 – 130 .  

  51. Vapnilc , V. N . 1995 . The nature of statistical learning theory. Springer. Williams, E. J., Guenther, A. and Fehsenfeld, E C. 1992. An inventory of nitric oxide emissions from soils in the United States . J. Geophys. Res . 97 , 7511 – 7519 .  

  52. Yang , W. X. and Meixner , F. X . 1997. Laboratory studies on the re-lease of nitric oxide from sub-tropical grassland soils: The effect of soil temperature and moisture. In: Gaseous Nitrogen Emissions from Grasslands (eds. S. C. Jarvis and B. F. Pain ), CAB International, Wallingford, New York, pp. 67 – 70.  

  53. Yan , X. , Ohara , T. and Akimoto , H . 2005. Statistical modelling of global soil NOx emissions. Global Biogeochem. Cycles 19, GB3019, https://doi.org/10.1029/2004GB002276 .  

  54. Yi , J. and Prybutok , V. R . 1996 . A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area . Environmental Poll . 92 , 349 – 357 .  

  55. Yienger , J. J. and Levy , H . II, 1995. Empirical model of global soil-biogenic NOx emissions. J. Geophys. Res . 100 , 11447 – 11464.  

comments powered by Disqus