Start Submission Become a Reviewer

Reading: Anthropogenic δ13C changes in the North Pacific Ocean reconstructed using a multiparameter m...

Download

A- A+
Alt. Display

Original Research Papers

Anthropogenic δ13C changes in the North Pacific Ocean reconstructed using a multiparameter mixing approach (MIX)

Authors:

Rolf E. Sonnerup ,

Joint Institute for Study of the Atmosphere and Ocean, University of Washington, US
X close

Ann P. Mcnichol,

National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, US
X close

Paul D. Quay,

School of Oceanography, University of Washington, US
X close

Richard H. Gammon,

School of Oceanography, University of Washington, US
X close

John L. Bullister,

NOAA/Pacific Marine Environmental Laboratory, US
X close

Christopher l. Sabine,

NOAA/Pacific Marine Environmental Laboratory, US
X close

Richard D. Slater

AOS program, Princeton University, US
X close

Abstract

A multiparameter mixing approach, ‘MIX’, for determining oceanic anthropogenic CO2 was used to reconstruct the industrial-era change in the 13C/12C of dissolved inorganic carbon (δ13C of DIC) along the 1992 165°E WOCE P13N section in the North Pacific Ocean. The back-calculation approach was tested against a known anthropogenic tracer, chlorofluorocarbon-11 (CFC-11), and also by reconstructing an ocean general circulation model’s (OGCM) anthropogenic δ13C change. MIX proved accurate to ±10% against measured CFC-11, but only to ± ±~25% reconstructing the OGCM’s δ13C change from 1992 model output. The OGCM’s CFC distribution was also poorly reconstructed using MIX, indicating that this test suffers from limitations in the OGCM’s representation of water masses in the ocean. The MIX industrial-era near-surface (200 m) δ13C change reconstructed from the WOCE P13N data ranged from .0.8° in the subtropics (15-30°N), to -0.6‰ in the tropics (10°N), and -0.4 to -0.2‰ north of 40°N. Depthintegrated changes along 165°E were -400‰.m to -500‰.m at low latitudes, and were smaller (-200‰.m) north of 40°N. The MIX North Pacific δ13C change is consistent with the global anthropogenic CO2 inventory of 118 ± 17 Pg from ΔC*

How to Cite: Sonnerup, R.E., Mcnichol, A.P., Quay, P.D., Gammon, R.H., Bullister, J.L., Sabine, C. l . and Slater, R.D., 2007. Anthropogenic δ13C changes in the North Pacific Ocean reconstructed using a multiparameter mixing approach (MIX). Tellus B: Chemical and Physical Meteorology, 59(2), pp.303–317. DOI: http://doi.org/10.1111/j.1600-0889.2007.00250.x
  Published on 01 Jan 2007
 Accepted on 9 Jan 2007            Submitted on 3 May 2006

References

  1. Anderson , L. A. and Sarmiento , J. L . 1994 . Redfield ratios of reminer-alization determined by nutrient data analysis . Global Biogeochem. Cycles 8 ( 1 ), 65 – 80 .  

  2. Bacastow , R. B. , Keeling , C. D. , Lueker , T. J. , Wahlen , M. and Mook , W. G . 1996 . The 313C Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: analysis of observations at Bermuda . Global Biogeochem. Cycles 10 ( 2 ), 335 – 346 .  

  3. Battle , M. , Bender , M. L. , Tans , P. , White , J. , Ellis , J. and co-authors. 2000. Global carbon sinks and their variability inferred from atmo-spheric 02 and 313C. Science 287, 2467 – 2470 .  

  4. Broecker , W. S. and Peng , T .—H. 1974. Gas exchange rates between air and sea. Tellus 26, 21 – 35.  

  5. Broecker , W. S. , Sutherland , S. , Smethie , W. , Peng , T.-H. and östlund, G. 1995. Oceanic radiocarbon: Separation of the natural and bomb components. Global Biogeochem. Cycles 9 ( 2 ), 263 – 288.  

  6. Bonneau , M.-C. , Bergnaud-Grazzini , C. and Berger , W. H . 1980 . Sta-ble isotope fractionation and differential dissolution in recent plank-tonic foraminifera from Pacific box cores . Oceanol. Acta 3 , 377 – 382 .  

  7. Bullister , J. L. and Weiss , R. F . 1988 . Determination of CC13F and CC12F2 in seawater and air . Deep-Sea Res . 35A , 839 – 853 .  

  8. Coatanoan , C. , Goyet , C. , Gruber , N. , Sabine , C. and Warner , M . 2001 . Comparison of two approaches to quantify anthropogenic CO2 in the ocean: Results from the northern Indian Ocean . Glob. Biogeochem. Cycles 15 ( 1 ), 11 – 25 .  

  9. Conlcright , M. E. , Levitus , S. and Boyer , T. P. 1994. World Ocean Atlas 1994 , Volume 1: Nutrients. NOAA Atlas NESDIS 1 , U.S. Department of Commerce , NOAA , NESDIS .  

  10. Fine , R. A. , Reid , J. L. and östlund, H. G. 1981 . Circulation of tritium in the Pacific Ocean . J. Phys. Ocean . 11 , 3 – 14 .  

  11. Francey , R. J. , Allison , C. E. , Etheridge , D. M. , Trudinger , C. M. , Enting , I. G. and co-authors. 1999. A 1000-year high precision record of 313C in atmospheric CO2. Tellus 51B, 170 – 193.  

  12. Fry , B. , Hopkinson , C. S. , Jr. , Nolin , A. and Wainright , S. C . 1998 . 13C/12C composition of marine dissolved organic carbon . Chem. Geol . 152 , 113 – 118 .  

  13. Gent , P. and McWilliams , J. C . 1990 . Isopycnal mixing in ocean circu-lation models . J. Phys. Ocean . 20 , 150 – 155 .  

  14. Gnanadesilcan , A. , Slater , R. D. , Gruber , N. and Sarmiento , J. L . 2002 . Oceanic vertical exchange and new production: a comparison between models and observations. Deep-Sea Research 11 49 , 363 – 401. Goericke, R. and Fry, B. 1994. Variations of marine plankton 313C with latitude, temperature, and dissolved CO2 in the world ocean . Global Biogeochem. Cycles 8 ( 1 ), 85 – 90 .  

  15. Goyet , C. and Davis , D . 1997 . Estimation of total CO2 concentration throughout the water column . Deep-Sea Res . 44 ( 5 ), 859 – 877 .  

  16. Goyet , C. , Coatanoan , C. , Eischeid , G. , Amaoka , T. , Okuda , K. and co-authors. 1999. Spatial variation of total CO2 and total alkalinity in the northern Indian Ocean: A novel approach for the quantification of anthropogenic CO2 in seawater. J. Mar Res. 57, 135 – 163.  

  17. Gruber , N. and Keeling , C. D . 2001 . An improved estimate of the isotopic air-sea disequilibrium of CO2: Implications for the oceanic uptake of anthropogenic CO2 . Geophys. Res. Lett . 28 ( 3 ), 555 – 558 .  

  18. Gruber , N. , Keeling , C. D. , Bacastow , R. B. , Guenther , P. R. , Lueker , T. J. and co-authors. 1999. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Bio-geochem. Cycles 13 ( 2 ), 307 – 335.  

  19. Gruber , N. , Sarmiento , J. L. and Stocker , T. F . 1996 . An improved method for detecting anthropogenic CO2 in the oceans . Global Biogeochem. Cycles 10 ( 4 ), 809 – 837 .  

  20. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626 – 630.  

  21. Heimann , M. and Maier-Reimer , E . 1996 . On the relations between the oceanic uptake of CO2 and its carbon isotopes . Glob. Biogeochem. Cycles 10 ( 1 ), 89 – 110 .  

  22. Hellerman , S. and Rosenstein , M . 1983 . Normal monthly wind stress over the world ocean with error estimates . J. Phys. Ocean . 13 , 1093 – 1104 .  

  23. Huang , R.-X. and Qiu , B . 1998 . The structure of the wind-driven cir-culation in the subtropical South Pacific Ocean . J. Phys. Ocean . 28 , 1173 – 1186 .  

  24. Huhn , O. , Roether , W. , Beining , P. and Rose , H. 2001. Validity limits of carbon tetrachloride as an ocean tracer. Deep-Sea Res. I 48, 2025 – 2049.  

  25. Johnson , G. C. and McPhaden , M. J . 1999 . Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean . J. Phys. Ocean . 29 , 3073 – 3089 .  

  26. Karstensen , J. and Tomczak , M . 1998 . Age determination of mixed wa-ter masses using CFC and oxygen data . J. Geophys. Res ., 103 ( C9 ), 18599 – 18610 .  

  27. Keir , R. S. , Rehder , G. , Suess , E. and Erlenkeuser , H . 1998 . The 313C anomaly in the Northeastern Atlantic . Global Biogeochem. Cycles 12 ( 3 ), 467 – 477 .  

  28. Kroopnick , P. M . 1985 . The distribution of 313C of E CO2 in the world oceans . Deep-Sea Res . 32 ( 1 ), 57 – 84 .  

  29. Matear , R. J. and McNeil , B. I . 2003 . Decadal accumulation of anthro-pogenic CO2 in the Southern Ocean: A comparison of CFC-age de-rived estimates to multiple-linear regression estimates . Global Bio-geochem. Cycles 17 ( 4 ), 1113 , https://doi.org/10.1029/2003GB002089.  

  30. Matsumoto , K. , Sarmiento , J. L. , Key , R. M. , Aumont, 0., Bullister, J. L. and co-authors. 2004. Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett. 31, L07303, https://doi.org/10.1029/2003GL018970.  

  31. McNeil , B. I. , Matear , R. J. and Tilbrook , B . 2001 . Does carbon 13 track anthropogenic CO2 in the Southern Ocean? . Global Biogeochem. Cy-cles 15 ( 3 ), 597 – 613 .  

  32. McNeil , B. I. , Matear , R. J. , Key , R. M. , Bullister , J. L. and Sarmiento , J. L . 2003 . Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set . Science 229 , 235 – 239 .  

  33. Michel , R. L. and Suess , H. E . 1975 . Bomb tritium in the Pacific Ocean . J. Geophys. Res . 80 , 4139 – 4152 .  

  34. Monterey , G. I. and Levitus , S . 1997 . Climatological cycle of mixed layer depth in the world ocean . U. S. Govt. Printing Office , NOAA NESDIS , pp. 5 .  

  35. Oeschger , H. , Siegenthaler , U. , Schotterer , U. and Gugelmann , A . 1975 . A box-diffusion model to study carbon dioxide in nature . Tellus 28 , 168 – 192 .  

  36. On , J. C . 2002. Global ocean storage of anthropogenic carbon (GOSAC), Final report to the EC environment and climate Programme. ENV4-CT97-0495.  

  37. Pacanowski , R. C. and Griffies , S. M . 1999. The MOM 3 manual, alpha version. NOAA(Geophysical Fluid Dynamics Laboratory, 580 pp. Pickard, G. L. and Emery, W. J. 1990. Descriptive Physical Oceanogra-phy. Pergamon press, New York, pp 320.  

  38. Quay , P. D. , Tilbrook , B. and Wong , C. S . 1992 . Oceanic uptake of fossil-fuel CO2: Carbon-13 evidence . Science 256 , 74 – 79 .  

  39. Quay , P. D. , Sonnerup , R. E. , Westby , T. , Stutsman , J. and McNichol , A. P . 2003 . Anthropogenic changes of the 13C/12C of dissolved in-organic carbon in the ocean as a tracer of CO2 uptake . Global Bio-geochem. Cycles 17 ( 1 ), 1004 , https://doi.org/10.1029/2001GB001817.  

  40. Redfield , A. C. , Ketchum , B. H. and Richards , F. A . 1963. The influence of organisms on the composition of sea-water. In: The Sea, vol. 2. (ed. M. N. Hill ), Interscience, New York pp. 26 – 77.  

  41. Sabine , C. L. , Feely , R. A. , Gruber , N. , Key , R. M. , Lee , K. and co-authors. 2004. The oceanic sink for anthropogenic CO2. Science 305, 367 – 371.  

  42. Sonnerup , R. E. , Quay , P. D. , McNichol , A. P. , Bullister , J. L. , Westby , T. A. and co-authors. 1999. Reconstructing the oceanic 13C Suess effect. Global Biogeochem. Cycles 13 ( 4 ), 857 – 872.  

  43. Sonnerup , R. E. , Quay , P. D. and McNichol , A. P . 2000 . The Indian Ocean 13C Suess effect . Global Biogeochem. Cycles 14 ( 3 ), 903 – 916 .  

  44. Stuiver , M. , Quay , P. D. and Ostlund , H. G . 1983 . Abyssal water Carbon-14 distribution and the age of the world oceans . Science 219 ( 4586 ), 849 – 851 .  

  45. Takahashi , T. , Sutherland , S. C. , Sweeney , C. , Poisson , A. , Metzl , N. and co-authors . 2002 . Deep-Sea Res . 49 , 1601 – 1622 .  

  46. Takahashi , Y. , Matsumoto , E. and Watanabe , Y. W . 2000 . The distribu-tion of 313C in total dissolved inorganic carbon in the central North Pacific Ocean along 175°E and implications for anthropogenic CO2 penetration . Marine Chemistry 69 , 237 – 251 .  

  47. Tomczak , M. and Large , D. G. B . 1989. Optimum multiparameter anal-  

  48. ysis of mixing in the thermocline of the eastern Indian Ocean . J. Geo-phys. Res. 94(C11), 16141 – 16149.  

  49. Wallace , D. W. R . 1995. Monitoring global ocean carbon inventories. Ocean Observing System Development Panel, Texas A&M Univer-sity, College Station, TX, 54 pp.  

  50. Warner , M. J. , Bullister , J. L. , Wisegarver , D. P. , Gammon , R. H. and Weiss , R. F . 1996 . Basinwide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985-1989 . J. Geophys. Res . 101 , 20525 – 20542 .  

  51. Warner , M. J. and Weiss , R. E 1985 . Solubilities of chlorofluorocar-bons 11 and 12 in water and seawater . Deep-Sea Res . 32 , 1485 – 1497 .  

  52. Watanabe , Y. W. , Ono , T. and Shimamoto , A . 2000 . Increase in the uptake rate of oceanic anthropogenic carbon in the North Pacific determined by CFC ages . Mar. Chem . 72 , 297 – 315 .  

  53. Waugh , D. W. , Hall , T. M. and Haine , T. W. N . 2003 . Relation-ships among tracer ages . J. Geophys. Res . 108 ( C5 ), 3138 , https://doi.org/10.1029/2002JC001325.  

  54. Willey , D. A. , Fine , R. A. , Sonnerup , R. E. , Bullister , J. L. , Smethie , W. M. , Jr. and Warner , M. J . 2004 . Global oceanic chlorofluorocar-bon inventory . Geophysical Research LettersGeophys. Res. Lett . 31 , L01303 , https://doi.org/10.1029/2003GL018816.  

  55. Zhang , J., Quay, P. D. and Wilbur, D. 0. 1995. Carbon isotope fractiona-tion during gas-water exchange and dissolution of CO2. Geochemica et Cosmochimica Acta 59 ( 1 ), 107 – 114.  

comments powered by Disqus