Start Submission Become a Reviewer

Reading: ‘How to find bananas in the atmospheric aerosol’: new approach for analyzing atmospheric nuc...

Download

A- A+
Alt. Display

Original Research Papers

‘How to find bananas in the atmospheric aerosol’: new approach for analyzing atmospheric nucleation and growth events

Authors:

Jost Heintzenberg ,

Leibniz-Institute for Tropospheric Research, DE
X close

Birgit Wehner,

Leibniz-Institute for Tropospheric Research, DE
X close

Wolfram Birmili

Leibniz-Institute for Tropospheric Research, DE
X close

Abstract

We have devised a new search algorithm for secondary particle formation events, or ‘nucleation events’ in data sets of atmospheric particle size distributions. The search algorithm is simple and based on the investigation of 18 integral parameters of the particle size distribution, three of which were found to be most relevant for identifying nucleation events. The algorithm is tested using long-term size distribution data sets of high-size resolution observed at Melpitz, Hohenpeissenberg, and Leipzig, Germany, and Beijing, China, thereby covering a wide range of clean and polluted conditions. By specifying the particular training sets, the method can be used by other researchers with different data sets or different research goals. The same search approach could be applied to identify and analyze other systematic changes in size distribution such as during frontal passages or sand storms. As an example application of the new algorithm, the 50 strongest nucleation events (‘bananas’) at each of the four sites are analyzed statistically in terms of average changes of integral parameters of the particle size distribution.

How to Cite: Heintzenberg, J., Wehner, B. and Birmili, W., 2007. ‘How to find bananas in the atmospheric aerosol’: new approach for analyzing atmospheric nucleation and growth events. Tellus B: Chemical and Physical Meteorology, 59(2), pp.273–282. DOI: http://doi.org/10.1111/j.1600-0889.2007.00249.x
  Published on 01 Jan 2007
 Accepted on 8 Jan 2007            Submitted on 23 Oct 2006

References

  1. Abel , N. , Jaenicke , R. , Junge , C. , Kanter , H. , Prieto , P. R. G. and co au-thors. 1969a . Luftchemische Studien am Observatorium Izafla (Tener-iffa) . Meteor Rdsch . 6 , 158 – 167 .  

  2. Abel , N. , Winkler , P. and Junge , C . 1969b. Studies of size distributions and growth with humidity of natural aerosol particles. Final Scientific Report Contract AF 61 (052) —965, Max-Planck-Institut fiir Chemie, Mainz, Germany, pp. 104.  

  3. Bauer , S . 2006 . Partikelneubildung und Wachstum ultrafeiner Par-tikel in Peking, China. Diploma Thesis , Universität Leipzig , Leipzig , Germany , pp. 69 .  

  4. Berndt , T. , Böge, 0., Stratmann, F., Heintzenberg, J. and Kulmala, M. 2005. Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 307, 698 – 700.  

  5. Birmili , W . 1998 . Production of new ultrafine aerosol particles in con-tinental air masses . Ph. D. Thesis , Universität Leipzig , Leipzig , pp. 107 .  

  6. Birmili , W. , Stratmann, E and Wiedensohler, A. 1999. Design of a DMA-based size spectrometer for a large particle size range and stable operation. J. Aerosol Sci. 30 ( 4 ), 549 – 553.  

  7. Birmili , W. and Wiedensohler , A . 2000 . New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence . Geophys. Res. Lett . 27 ( 20 ), 3325 – 3328 .  

  8. Birmili , W. , Wiedensohler , A. , Plass-Dülmer , C. and Berresheim , H . 2000 . Evolution of newly formed aerosol particles in the continental boundary layer: a case study including OH and H2SO4 measurements . Geophys. Res. Lett . 27 ( 15 ), 2205 – 2209 .  

  9. Birmili , W. , Wiedensohler , A. , Heintzenberg , J. and Lehmann , K . 2001 . Atmospheric particle number size distribution in Central Europe: Sta-tistical relations to air masses and meteorology . J. Geophys. Res . 106 ( D23 ), 32005 – 32018 .  

  10. Birmili , W. , Berresheim , H. , Plass-Diilmer , C. , Elste , T. , Gilge , S. and co-authors. 2003. The Hohenpeissenberg aerosol formation experi-ment (HAFEX): A long-term study including size-resolved aerosol, 142504, OH, and monoterpenes measurements. Atmos. Chem. Phys. 3, 361 – 376.  

  11. Boy , M. and Kulmala , M . 2002 . Nucleation events in the continental boundary layer: influence of physical and meteorological parameters . Atmos. Chem. Phys . 2 , 1 – 16 .  

  12. Clement , C. E , Pirjola , L. , dal Maso, M., Mäkeld, J. M. and Kulmala, M. 2001. Analysis of particle formation bursts observed in Finland. J. Aerosol Sci. 32 ( 2 ), 217 – 236.  

  13. Dal Maso , M. , Kulmala , M. , Riipinen , I. , Wagner , R. , Hussein , T. and co-authors. 2005. Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR 11, Hyytiälä, Finland. Bor Env. Res. 10, 323 – 336.  

  14. Engler , C. , Rose , D. , Wehner , B. , Gnauk , T. , Briiggemann , E. and co-authors. 2006. Size distributions of non-volatile particle residuals (Dp <800 nm) at a rural observation site in Germany and relation to air mass origin. Atmos. Chem. Phys. Discuss . 6 , 5505 – 5542 .  

  15. Heintzenberg , J., Muller, K., Birmili, W., Spindler, G. and Wiedensohler, A. 1998. Mass-related aerosol properties over the Leipzig Basin. J. Geophys. Res . 103 ( D11 ), 13 125-13 136.  

  16. Heintzenberg , J., Birmili, W., Wiedensohler, A., Nowak, A. and Tuch, T. 2004. Structure, variability and persistence of the submicrometer marine aerosol. Tellus 56B(4), 357 – 367.  

  17. Israel , H. and Schulz , L . 1932 . über die Gröf3enverteilung atmo-sphdrischer Ionen . Meteor Z . 49 , 226 – 233 .  

  18. Junge , C . 1955 . The size distribution and aging of natural aerosols as de-termined from electrical and optical data on the atmosphere . J. Meteor 12 , 13 – 25 .  

  19. Kavouras , I. G. , Mihalopoulos , N. and Stephanou , E. G. , 1998 . Forma-tion of atmospheric particles from organic acids produced by forests . Nature 395 , 683 – 686 .  

  20. Kerminen , V.-M. , Pirjola , L. and Kulmala , M . 2001. How significantly does coagulation scavenging limit atmospheric particle production? J. Geophys. Res . 106 ( D20 ), 24 119-24 126.  

  21. Kerminen , V.-M. and Kulmala , M . 2002 . Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J. Aerosol Sc i . 33 , 609 – 622 .  

  22. Kulmala , M. , Kerminen , V.-M. and Laalcsonen , A . 1995 . Simulations on the effect of sulphuric acid formation on atmospheric aerosol concen-trations . Atmos. Environ . 29 ( 3 ), 377 – 382 .  

  23. Kulmala , M. , Pirjola , L. and Mäkelä , J. M . 2000 . Stable sulphonate clusters as a source of new atmospheric particles . Nature 404 , 66 – 69 .  

  24. Kulmala , M. , Dal Maso , M. , Mä1celä, J. M., Pirjola, L., Väkevä, M. and co-authors. 2001. On the formation, growth and composition of nucleation mode particles. Tellus 53B(4), 479 – 490.  

  25. Kulmala , M. , Laalcso , L. , Lehtinen , K. E. J. , Riipinen , I. , Dal Maso, M., and co-authors. 2004a. Initial steps of aerosol growth. Atmos. Chem. Phys. 4, 2553 – 2560.  

  26. Kulmala , M. , Vehlcamdlcia , H. , Petäj a, T., Maso, M. D., Lauri, A. and co-authors. 2004b. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143 – 176.  

  27. 1celd, J., Dal Maso, M., Pirjola, L., Keronen, R, Laakso, L. and co-authors. 2000. Characteristics of the atmospheric particle formation events observed at a boreal forest site in southern Finland. Bor Env. Res. 5, 299 – 313.  

  28. 1celd, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A. and co-authors. 1997. Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys. Res. Lett. 24(10), 1219 – 1222.  

  29. McMurry , P. H. , Fink , M. , Sakurai , H. , Stolzenburg , M. R. , Mauldin , L. and co-authors. 2005. A criterion for new particle formation in the sulfur-rich Atlanta atmosphere. J. Geophys. Res . 110 ( D22502 ), https://doi.org/10.1029/2005JD005901 .  

  30. Misaki , M . 1964 . Mobility spectrum of large ions in the New Mexico semidesert. J. Geophys. Res . 69 , 3309 – 3318 .  

  31. Pirjola , L. , Kulmala , M. , Bischoff , A. , Wilck , M. and Stratmann , F . 1998. Effects aerosol dynamics on the formation of sulphuric acid aerosols, 5th International Aerosol Conference. J. Aerosol Sci., Edinburgh, 12-18. September, pp. 825 – 826.  

  32. Seinfeld , J. H. and Pandis , S. N. , 1998 . Atmospheric Chemistry and Physics . John Wiley & Sons , New York NY , pp. 1326 .  

  33. Stanier , C. , Khlystov , A. and Pandis , S . 2004. Nucleation events during the Pittsburgh air quality study: Description and relation to key me-teorological, gas phase, and aerosol parameters. Aerosol Sci. Technol. 38(Suppl. 1), 253 – 264.  

  34. Stolzenburg , M. R. and McMurry , P. H. , 1991 . An ultrafine aerosol con-densation nucleus counter . Aerosol Sci. TechnoL 14 , 48 – 65 .  

  35. Wehner , B. and Wiedensohler , A . 2003 . Long term measurements of sub-micrometer urban aerosols: Statistical analysis for correlations with meteorological conditions and trace gases . Atmos. Chem. Phys . 3 , 867 – 879 .  

  36. Wehner , B. , Wiedensohler , A. , Tuch , T. , Wu , Z. J. , Hu , M. and co-authors. 2004. Variability of the aerosol number size distribu-tion in Beijing, China: New particle formation, dust storms, and high continental background. Geophys. Res. Lett. 31 ( 22 ), L22108, https://doi.org/10.1029/2004GL021596 .  

  37. Wehner , B. , Petäjä , T. , Boy , M. , Engler , C. , Birmili , W. and co-authors. 2005. The contribution of sulfuric acid and non-volatile compounds on the growth of freshly formed atmospheric aerosols. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL023827 .  

  38. Winklmayr , W . 1987 . Untersuchung des ultrafeinen Aerosols in der ur-banen Atmosphiire von Wien . Ph.D. Thesis , Universität Wien , Wien , pp. 187 .  

  39. Winklmayr , W. , Reischl , G. R , Lindner , A . 0. and Berner, A. 1991. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J. Aerosol Sci. 22, 289 – 296.  

  40. Yu , F. and Turco , R. R , 2000 . From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric and aerosol formation . J. Geophys. Res . 106 ( D5 ), 4797 – 4814 .  

  41. Thou , L. , Kim , E. , Hopke , P. K. , Stanier , C. and Pandis , S. N. , 2005 . Mining airborne particulate size distribution data by positive matrix factorization . J. Geophys. Res . 110 ( D7 ), D07519 .  

comments powered by Disqus