Start Submission Become a Reviewer

Reading: Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosyst...

Download

A- A+
Alt. Display

Original Research Papers

Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests

Authors:

Anders Lindroth ,

Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, SE
X close

Fredrik Lagergren,

Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, SE
X close

Mika Aurela,

Finnish Meteorological Institute, Helsinki, FI
X close

Brynhildur Bjarnadottir,

Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, SE; Icelandic Forest Research, Mogilsa, IS
X close

Torben Christensen,

Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, SE
X close

Ebba Dellwik,

Wind Energy Department, Risoe National Laboratory, Risoe, DK
X close

Achim Grelle,

Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SE
X close

Andreas Ibrom,

Biosystems Department, Risoe National Laboratory, Risoe, DK
X close

Torbjörn Johansson,

Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, SE
X close

Harry Lankreijer,

Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, SE
X close

Samuli Launiainen,

Department of Physical Sciences, Helsinki University, Helsinki, FI
X close

Tuomas Laurila,

Finnish Meteorological Institute, Helsinki, FI
X close

Meelis Mölder,

Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, SE
X close

Eero Nikinmaa,

Department of Forest Ecology, Agricultural University Helsinki, Helsinki, FI
X close

Kim Pilegaard,

Biosystems Department, Risoe National Laboratory, Risoe, DK
X close

Bjarni D. Sigurdsson,

Agricultural University of Iceland, Reykjavik, IS
X close

Timo Vesala

Department of Physical Sciences, Helsinki University, Helsinki, FI
X close

Abstract

Data on net CO2 exchange from eight forests in Denmark, Sweden, Finland and Iceland were used to analyse which factors were controlling photosynthesis and respiration. The forests consisted of different species ranging in climatic condition from temperate to subarctic. Only well mixed conditions were analysed (u* > 0.3 ms-1). The parameters of a light response function showed strong seasonal variations with similar behaviour for all stands except for a beech forest where the development of a vigorous ground vegetation in spring affected the photosynthesis parameters differently as compared to the other forests. The beech forest also showed the highest respiration rates in the earlier part of the growing season in contrast to the other forests that showed maximum values in late part of July. The mean halfmonthly nighttime respiration rates were well explained by an equation with one fitting parameter, the respiration rate at 10 °C, with an r2 = 0.864 for all stands together. The difference between the stands concerning both photosynthesis and respiration parameters were largely explained by the differences in LAI. After normalizing for LAI, the only remaining correlation was between respiration and stand age. These results are promising for application of remote sensing for estimation of respiration as well as gross primary productivity from forests.

How to Cite: Lindroth, A., Lagergren, F., Aurela, M., Bjarnadottir, B., Christensen, T., Dellwik, E., Grelle, A., Ibrom, A., Johansson, T., Lankreijer, H., Launiainen, S., Laurila, T., Mölder, M., Nikinmaa, E., Pilegaard, K., Sigurdsson, B.D. and Vesala, T., 2008. Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests. Tellus B: Chemical and Physical Meteorology, 60(2), pp.129–142. DOI: http://doi.org/10.1111/j.1600-0889.2006.00330.x
  Published on 01 Jan 2008
 Accepted on 25 Oct 2007            Submitted on 22 Dec 2006

Reference

  1. Ágren , G. I. , Bosatta , E. and Magill , A. H . 2001 . Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition . Oecologia 128 , 94 – 98 .  

  2. Aubinet , M. , Grelle , A. , Ibrom , A. , Rannilc , U. , Moncrieff , J. and co-authors. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. Ecol. Res . 30 , 113 – 175 .  

  3. Aurela , M . 2005 . Carbon dioxide exchange in subarctic ecosystems measured by a micrometeorological technique, Finnish Meteorological Institute Contributions No. 51, Helsinki, ISBN 951-697-616-6, ISSN 0782-6117,120 pp .  

  4. Berggren , D. , Bergkvist , B. , Johansson , M.-B. , Langvall , O. , Majdi , H. and co-authors. 2004. A description of LUSTRA's common field sites. In: Reports in Forest Ecology and Forest Soils , Report 87. Department of Forest Soils, Swedish University of Agricultural Sciences, Uppsala, Sweden, 43 pp.  

  5. Bjarnadottir , B. and Sigurdsson , B. D. 2007. Eddy flux measurements over a young Larix sibirica stand in eastern Iceland: measurements and initial results. Temallord 508, 89-9 5  

  6. Black , T. A. , Chen , W. J. and Barr , A. G . 2000 . Increased carbon sequestration by a boreal deciduous forest in years with a warm spring . Geophys. Res. Lett . 27 , 1271 – 1274 .  

  7. Black , T. A. , Gaumont-Guay , D. , Jassal , R. S. , Amiro , B. D. , Jarvis , P. G. and co-authors. 2005. Measurement of CO2 exchange between Boreal forest and the atmosphere. In: The Carbon Balance of Forest Biomes ( eds H. Griffiths and P. G. Jarvis ). Taylor and Francis Group, UK, 151-185, ISBN 1-8599- 6214 – 9 .  

  8. Burba , G. G. , Anderson , D. J. , Xu , L. and McDermitt , D. K . 2006 . Correcting apparent off-season CO2 uptake due to surface heating of an open path gas analyser: progress report of an ongoing study. In: Proceedings of the 27th Conference on Agricultural and Forest Meteorology , American Meteorological Society, P4.4, 12 pp.  

  9. Davidson , E. A. and Janssens , I . 2006 . Temperature sensitivity of soil carbon decomposition and feedbacks to climate change . Nature 440 , 165 – 173 .  

  10. Davidson , E. A. , Belk , E. and Boone , R. D . 1998 . Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest . Global Change Biol . 4 , 217 – 227 .  

  11. Eklundh , L. , Hall , K. , Erilcsson , H. , Ardo , J. and Pilesjö , P . 2003 . Investigating the use of LANDSAT Thematic Mapper data for estimation of forest leaf area index in southern Sweden . Can. J. Remote Sens . 29 , 349 – 362 .  

  12. Farquhar , G. D . 1989 . Models of integrated photosynthesis of cells and leaves. Philos. Trans. Roy. Soc. Lond . Ser. B, Biol. Sci . 323 , 357 – 367 .  

  13. Farquhar , G. D. and von Caemmerer , S . 1982 . Modelling photosynthetic response to environmental conditions. In: Encyclopedia of Plant Physiology Volume 12B (eds O. L. Lange , P. S. Nobel , C. B. Osmond and H. Ziegler ). Springer Verlag, Berlin, 549 – 587 .  

  14. Grace , J ., 2001 . Carbon cycle . Encyclopedia of Biodiversity 1 , 609 – 628 .  

  15. Grelle , A. , Lindroth , A. and Molder , M . 1999 . Seasonal variation of boreal forest surface conductance and evaporation. Agric. For. Meteorol . 98-99, 563 – 578 .  

  16. Goulden , M. L. , Wofsy , S. C. , Harden , J. W. , Trumbore , S. E. , Crill , P. M. and co-authors. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279 , 214 – 215 .  

  17. Granier , A. , Pilegaard , K. and Jensen , N. O . 2002 . Similar net ecosystem exchange of beech stands located in France and Denmark . Agric. For Meteorol . 114 , 75 – 82 .  

  18. Griffis , T. J. , Black , T. A. , Morgenstern , K. , Barr , A. G. , Nesic , Z. and co-authors. 2003. Ecophysiological controls on the carbon balances of three southern boreal forests. Agric. For Meteorol . 117 , 53 – 71 .  

  19. Hogberg , R , Nordgren , A. , Ottosson-Löfvenius , M. , Bhupinderpal-Singh , Olsson , P., and co-authors. 2005. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests. In: The Carbon Balance of Forest Biomes ( eds H. Griffiths and P. G. Jarvis ), Francis & Taylor, Abingdon, 249 – 265 .  

  20. Hyovonen , R. , Agrev , G. I. , Linder , S. , Persson , T. , Francesca Cotruto , M. and co-authors. 2007. The likely impact of elevated [CO2], nitrogen depocition, increased temperature and management on carbon sequestration in temperate and boreal forest-ecosystems: a literature review. New Phytologist . 173 , 463 – 480 .  

  21. Janssens , I. A. , Lanlcreijer , H. , Matteucci , G. , Kowalski , A. S. , Buchmann , N. and co-authors. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol . 7 , 269 – 278 .  

  22. Johansson , T . 2006 . Temporal and spatial variability of carbon cycling in a subarctic landscape. Meddelanden frail Lunds universitets geografiska institutioner Avhandlingar 166, Lund University, ISBN 91-974997-7-3,31 pp .  

  23. Kirschbaum , M. U. F . 1995 . The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage . Soil. Biol. Biochem . 27 , 753 – 760 .  

  24. Kowalski , A. S. , Loustau , D. , Berbigier , P. , Manca , G. , Tedeschi , V. and co-authors. 2004. Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe . Global Change Biol . 10 , 1707– 1723 .  

  25. Lagergren , F. , Lindroth , A. , Dellwik , E. , Ibrom , A. , Lankreijer , H. and co-authors. Biophysical controls on CO2 fluxes of three Northern forest based on long-term eddy covariance data. Tellus 60B, this issue .  

  26. Lindroth , A. , Grelle , A. and Moren , A.-S . 1998 . Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity . Global Change Biol . 4 , 443 – 450 .  

  27. Lloyd , J. and Taylor , J. A . 1994 . On the temperature dependence of soil respiration . Funct. EcoL 8 , 315 – 323 .  

  28. Marklcanen , T. , Rannik , U. , Keronen , P. , Suni , T. and Vesala , T. 2001. Eddy covariance flux over a Scots pine forest. Boreal Environ. Res . 6 , 65 – 78 .  

  29. Milyukova , I. M. , Kolle , O. , Varlagin , A. V. , Vygodslcaya , N. N. , Schulze , E.-D. and co-authors. 2002. Carbon balance of a southern taiga spruce stand in European Russia. Tellus 54B, 429 – 442 .  

  30. Mäkelä , A. , Kolari , R , Karimäki , J. , Nilcinmaa , E. , Perämälci , M. , and co-authors. 2006. Modelling five years of weather-driven variation of GPP in a boreal forest. Agric. For MeteoroL 139 , 382 – 398 .  

  31. Mäkelä , A. , Hari , R , Berninger , F. , Hänninen , H. and Nilcinmaa , E . 2004 . Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature . Tree Physiol . 24 , 369 – 376 .  

  32. Monteith , J. L . 1977 . Climate and efficiency of crop production in Britain . Philos. Trans. Roy. Soc. (Lond.), Ser B 281 , 277 – 294 .  

  33. Olofsson , P. and Eklundh , L . 2006 . Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: modeling and evaluating the fractional absorption . Remote Sens. Environ ., 110 , 240 – 251 .  

  34. Olsson , P ., 2006. Effects of Fertilisation on Rhizospheric and Heterotrophic Soil CO2 Efflux in Boreal Norway Spruce Stands . Licentiate thesis, Faculty of Forest Sciences, Department of Forest Ecology Swedish University of Agricultural Sciences, Umeh, Sweden, 29 pp.  

  35. Palmroth , S. and Hari , P . 2001 . Evaluation of the importance of acclimation of needle structure, photosynthesis, and respiration to available photosynthetically active radiation in a Scots pine canopy . Can. J. For Res . 31 , 1235 – 1243 .  

  36. Pereira , J. S . 1994 . Gas exchange and growth. In: Ecosphysiology of Photosynthesis (eds. E.-D. Schulze and M. M. Caldwell ) . Ecol. Stud . 100 , 147 – 181 .  

  37. Pilegaard , K. , Hummelshoj , P. , Jensin , N. O. and Chen , Z . 2002 . Two years of CO2 eddy-flux measurements over a Danish beech forest . Agric. For. MeteoroL 107 , 29 – 41 .  

  38. Pilegaard , K. , Milckelsen , T. N. , Beier , C. , Jenssen , N. O. , Ambus , P. and co-authors. 2003. Field measurements of atmosphere-biosphere interactions in a Danish beech forest. Boreal Environ. Res . 8 , 315 – 333 .  

  39. Raich , J. W. and Schlesinger , W. H . 1992 . The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate . Tellus 44B , 81 – 99 .  

  40. Reichstein , M. , Rey , A. , Freibause , A. , Tenhunen , J. , Valentini , R. and co-authors. 2003. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biochem. Cycles 17 (4), 1104 , https://doi.org/10.1029/2003GB002035,2003  

  41. Ryan , M. G. and Law , B. E . 2005 . Interpreting, measuring, and modeling soil respiration . Biogeochemisby 73 , 3 – 27 .  

  42. Sascha , R. , Reichstein , M. and Falge , E . 2005 . The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux-a modified model . Plant Soil 268 , 21 – 33 .  

  43. Schulze , E.-D . 2006 . Biological control of terrestrial carbon sink . Bio-geosciences 3 , 147 – 166 .  

  44. Sigurdsson , B. D ., 2001 . Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3-year field study . Trees 15 , 403 – 413 .  

  45. Stenberg , P. , DeLucia , E. H. , Schoettle , A. W. and Smolander , H . 1995 . Photosynthetic light capture and processing from cell to canopy. In: Resource Physiology of Conifers: acquisition, allocation, and utilization. (eds W. K. Smith and T. M. Hinckley ), Academic Press, San Diego, USA., 3 – 38 .  

  46. Stenberg , P. , Kuuluvainen , T. , Kellomäki , S. , Grace , J. C. , Jokela , E. J. and co-authors. 1994. Crown structure, light interception and productivity of pine trees and stands. In: A comparative analysis of pine forest productivity (eds H. L. Gholz , R. McMurtrie and S. Linder ), EcoL Bull. (Copenhagen ) 43 , 20 – 34 .  

  47. Suni , T. , Rinne , J. , Reissel , A. , Altimir , N. , Keronen , P. , Rannilc , D. , Dal Maso , M. , Kulmala , M. and Vesala , T . 2003 . Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland, 1996-2001 . Boreal Environ. Res . 4 , 287 – 301 .  

  48. Tanja , S. , Vesala , T. , Marklcanen , T. , Berninger , E , Hari , P. and co-authors. 2003. Air temperature triggers the commencement of evergreen boreal forest photosynthesis in spring. Global Change Biol . 9, 1410-142 6 .  

  49. Tjoelker , M. G. , Olelcsyn , J. and Reich , P. B . 2001 . Modelling respiration of vegetation: evidence for a general temperature-dependent Qio . Global Change Biol . 7 , 223 – 230 .  

  50. Valentini , R. , Matteucci , G. , Dolman , A. J. , Schulze , E.-D. , Rebman , C. and co-authors. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404 , 861 – 865 .  

  51. Wallenstein , M. D. , McNulty , S. , Fernandez , I. J. , Boggs , J. and Schlesinger , W. H . 2006 . Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments . Forest EcoL Manage . 222 , 459 – 468 .  

  52. Wallin , G. , Linder , S. , Lindroth , A. , Räntfors , M. , Flemberg , S. and co-authors. 2001. CO2 exchange of boreal Norway spruce at the shoot, tree and ecosystem level. Tree Physiol . 21 , 969 – 976 .  

  53. Wan , Z. , Zhang , Y. , Zhang , O. and Li , Z.-L . 2004 . Quality assessment and validation of the MODIS global land surface temperature . Int. J. Remote Sens . 25 , 261 – 274 .  

  54. Wang , H. , Saigusa , N. , Yamamoto , S. , Kondo , H. , Hirano , T. and co-authors. 2004. et ecosystem CO2 exchange over a larch forest in Hokkaido, Japan. Atmos. Environ . 38 , 7021 – 7032 .  

  55. Webb , E. K. , Pearman , G. I. and Leuning , R . 1980 . Correction of flux measurements for density effects due to heat and water vapor transfer . Quart. J. Roy. MeteoroL Soc ., 106 , 85 – 100 .  

comments powered by Disqus