Start Submission Become a Reviewer

Reading: Anthropogenic CO2 in the oceans estimated using transit time distributions

Download

A- A+
Alt. Display

Original Research Papers

Anthropogenic CO2 in the oceans estimated using transit time distributions

Authors:

D. W. Waugh ,

Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, US
X close

T. M. Hall,

NASA Goddard Institute for Space Studies, New York, NY 10025, US
X close

B. I. McNeil,

School of Mathematics, University of New South Wales, Sydney, NSW 2052, AU
X close

R. Key,

Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, US
X close

R. J. Matear

CSIRO Divsion of Marine Research, Hobart, TAS 7001, AU
X close

Abstract

The distribution of anthropogenic carbon (Cant) in the oceans is estimated using the transit time distribution (TTD) method applied to global measurements of chlorofluorocarbon-12 (CFC12). Unlike most other inference methods, the TTD method does not assume a single ventilation time and avoids the large uncertainty incurred by attempts to correct for the large natural carbon background in dissolved inorganic carbon measurements. The highest concentrations and deepest penetration of anthropogenic carbon are found in the North Atlantic and Southern Oceans. The estimated total inventory in 1994 is 134 Pg-C. To evaluate uncertainties the TTD method is applied to output from an ocean general circulation model (OGCM) and compared the results to the directly simulated Cant. Outside of the Southern Ocean the predicted Cant closely matches the directly simulated distribution, but in the Southern Ocean the TTD concentrations are biased high due to the assumption of ‘constant disequilibrium’. The net result is a TTD overestimate of the global inventory by about 20%. Accounting for this bias and other centred uncertainties, an inventory range of 94–121 Pg-C is obtained. This agrees with the inventory of Sabine et al., who applied the ΔC* method to the same data. There are, however, significant differences in the spatial distributions: The TTD estimates are smaller than ΔC* in the upper ocean and larger at depth, consistent with biases expected in ΔC* given its assumption of a single parcel ventilation time.

How to Cite: Waugh, D.W., Hall, T.M., McNeil, B.I., Key, R. and Matear, R.J., 2006. Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus B: Chemical and Physical Meteorology, 58(5), pp.376–389. DOI: http://doi.org/10.1111/j.1600-0889.2006.00222.x
6
Views
1
Downloads
  Published on 01 Jan 2006
 Accepted on 10 Jul 2006            Submitted on 12 Jan 2006

References

  1. Brewer , P. G. 1978. Direct observation of the oceanic CO2 increase. Geophys. Res. Lett. 5, 997 – 1000.  

  2. Brewer , P. G. , Bradshaw , A. L. , Shafer , D. K. and Williams , R. T . 1986. Measurements of total carbon dioxide and alkalinity in the North At-lantic Ocean in 1981. In: The Changing Carbon Cycle: A Global Analysis, (eds. J. R. Traballca and D. E. Reichle ), Springer, New York, 348 – 370.  

  3. Millero , F. J . 1979 . Gradual increase of oceanic CO2 . Nature 277 , 205 – 206 .  

  4. Coatanoan , C. , Goyet , C. , Sabine , C. L. and Warner , M . 2001 . Com-parison of the two approaches to quantify anthropogenic CO2 in the ocean: results from the northern Indian . Global Biogeochem. Cycles 15 , 11 – 26 .  

  5. Dickson , A.G. and Millero , F.J . 1987 . A comparison of the equilibrium constants for the dissocaition of carbonic acid in seawater media . Deep-Sea Res . 40A , 107 – 118 .  

  6. Friis , K. , Kortzinger , A. , Patsch , J. and Wallace , D. W. R . 2005 . On the temporal increase in anthropogenic CO2 in the subpolar North Atlantic . Deep-Sea Res . 52 , 681 – 698 .  

  7. Gloor , M. , Gruber , N. , Sarmiento , J. , Sabine, C.L., Feely, R. A., and co-authors. 2003. A first estimate of present and preindustrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett. 30, https://doi.org/10.1029/2002GL015594 .  

  8. Goyet , C. , Coatanoan , C. , Eischeid , G. , Amaoka , T. , Okuda , K. , and co-authors 1999. Spatial variation of total CO2 and total alkalinity in the northern Indian Ocean: a novel approach for the quantification of anthropogenic CO2 in seawater. J. Marine Res. 57 , 135 – 163. Gruber, N., 1999. Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem. Cycles 12, 165 – 191.  

  9. Gruber , N. , Sarmiento , J. L. and Stocker , T.F. , 1996 . An improved method for detecting anthropogenic CO2 in the oceans . Global Biogeochem. Cycles 10 , 809 – 837 .  

  10. Haine , T. W. N. and, Hall , T. M. 2002. A generalized transport theory: water-mass composition and age, J. Phys. Oceanogr 32 , 1932 – 1946. Hall, T. M., Haine, T. W. N. and Waugh, D. W. 2002. Inferring the con-centration of anthropogenic carbon in the ocean from tracers. Global Biogeochem. Cycles 16, https://doi.org/10.1029/2001GB001835 .  

  11. Hall , T. M. , Waugh , D. W. , Haine , T. W. N. , Robbins , P. E. and Khaliwala , S . 2004. Reduced estimates of anthropogenic carbon in the Indian Ocean due to mixing and time-varying air-sea CO2 diseqilibrium. Global Biogeochem. Cycles 18, https://doi.org/10.1029/2003GB002120 .  

  12. Hall , T. M. and Plumb , R. A . 1994 . Age as a diagnostic of stratospheric transport . J. Geophys. Res ., 99 , 1059 – 1070 .  

  13. Houghton , J. T. , Ding Y. , Griggs , D. J. , Noguer , M. , van der Linden, P. J., and co-authors, 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press , Cambridge , 881.  

  14. Khatiwala S. , Visbeck M. and Cane M. A . 2005 . Accelerated simulation of passive tracers in ocean circulation models . Ocean Modelling 9 , 51 – 69 .  

  15. Keeling , R. E 2005 . Comment on ‘The Ocean Sink for Anthropogenic CO2’ . Science 308 , 1743 .  

  16. Key , R. M. , Kozyer A. , Sabine , C. L. , Lee , K. , Wanninlchof , R. , and co-authors, 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles 18, https://doi.org/10.1029/2004GB002247 .  

  17. Lee , K. , Choi , S. D. , Park , G. H. , Wanninlchof , R. , Peng T. H., and co-authors, 2003. An updated anthropogenic CO2 in-ventory in the Atlantic Ocean. Global Biogeochem. Cycles 17, https://doi.org/10.1029/2003GB002067 .  

  18. Lo Monaco C. , Metzl , N. , Poisson , A. , Brunet C. , and Schauer , B . 2005a. Anthropogenic CO2 in the Southern Ocean : distribution and inventory at the Indo-Atlantic boudary (VVOCE line 16). J. Geophys. Res . 110 , https://doi.org/10.1029/2004JC002643 .  

  19. Lo Monaco C. , Goyet , C. , Metzl , N. , Poisson , A. and Touratier F . 2005b. Distribution and inventory of anthropogenic CO2 in the Southern Ocean: comparison of three data-based methods. J. Geophys. Res . 110 , https://doi.org/10.1029/2004JC002571 .  

  20. Matear , R. J. , C. S. Wong and L. Xie, 2003. Can CFCs be used to determine anthropogenic CO2. Global Biogeochem. Cycles 17, https://doi.org/10.1029/2001GB001415 .  

  21. Matsumoto , K. , Sarmiento J. L. , Key , R. M. , Aumont , O. , Bullis-ter, J. K., and co-authors 2004. Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett. 31, https://doi.org/10.1029/2003GL018970 .  

  22. Matsumoto , K. and Gruber , N . 2005. How accurate is the estimation of anthropogenic carbon in the ocean? An evaluation of the AC* method. Global Biogeochem. Cycles 19, https://doi.org/10.1029/2004GB002397 .  

  23. McNeil B. I. , Matear , R. J. , Key , R. M. , Bullister J. L., and Sarmiento, J. L., 2003. Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299, 235 – 239.  

  24. Mecicing S. , Warner M. J. , Greene C. E., Hautala S. L. and Son-nerup R. E. 2004. Influence of mixing on CFC uptake and CFC ages in the North Pacific thermocline. J. Geophys. Res . 109 , https://doi.org/10.1029/2003JC001988 .  

  25. Merbach , C. , Culberson , C. H. , Hawley , J. E. and Pytkowicz , R. M. 1973. Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18, 897 – 907.  

  26. Mikaloff-Fletcher , S. E. , Gruber , N. , Jacobson , A. R. , Doney , S. C. , Duticiewicz , S. , and co-authors. 2006, Inverse estimates of anthro-pogenic carbon uptake, transport, and storage by the ocean. Global Biogeochem. Cycles, 20, https://doi.org/10.1029/2005GB002530  

  27. On , J. C. , Maier-Reimer , E. , Mikolajewicz , U. , Monfray , P. , Sarmiento , J. L. , and co-authors. 2001. Estimates of anthropogenic carbon up-take from four three-dimensional global ocean models. Global Bio-geochem. Cycles 15, 43 – 60.  

  28. Robbins , P. E. , Price J. E , Owens , W. B. and Jenkins W. J . 2000 . On the importance of lateral diffusion for the ventilation of the lower thermocline in the subtropical North Atlantic . J. Phys. Oceanogr 30 , 67 – 89 .  

  29. Sabine , C. L. and Feely , R. A . 2001 . Comparison of recent Indian Ocean anthropogenic CO2 estimates with a historical approach . Global Bio-geochem. Cycles 15 , 31 – 42 .  

  30. Sabine , C. L. and Gruber , N . 2005 . Response to Comment on “The Ocean Sink for Anthropogenic CO2” . Science 308 , 1743 .  

  31. Sabine , C. L. , Key , R. M. , Johnson K. M. , Millero , F. J. , Poisson , A. , and co-authors. 1999. Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochem. Cycles 13, 179 – 198.  

  32. Sabine , C. L. , Feely , R. A. , Key , R. M. , Bullister , J. L. , Millero , F. J. , and co-authors. 2002. Distribution of anthropogenic CO2 in the Pacific. Global Biogeochem. Cycles 16, https://doi.org/10.1029/2001GB001639 .  

  33. Sabine , C. L. , Feely , R. A. , Gruber , N. , Key , R. M. , Lee , K. , and co-authors. 2004. The Oceanic Sink for Atmospheric Carbon. Science 305, 367 – 371.  

  34. Thomas , H. and Itteklcot , V. , 2001 . Determination of anthropogenic CO2 in the North Atlantic Ocean using water mass ages and CO2 equilib-rium chemistry . Journal of Marine Systems 27 , 325 – 336 .  

  35. Touratier F. and Goyet , C . 2004 . Applying the new TrOCA approach to assess the distribution of anthropogenic CO2 in the Atlantic Ocean . Journal of Marine Systems 46 , 181 – 197 .  

  36. Walker , S. J. , Weiss , R. F. and Salameh , P. K. 2000. Reconstructed histo-ries of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113, and carbon tetrachloride. J. Geophys. Res . 105 , 14285 – 14296.  

  37. Wallace , D. W. R . 1995. Monitoring global ocean carbon inventories. Ocean Observing System Development panel. Texas A & M Univer-sity, College Station, Texas, 54.  

  38. Wanninlchof , R. , Doney , S. C. , Peng , T. H. , Bullister , J. L. , Lee , K. and Feely , R. A. 1999. Comparison of methods to determine the anthro-pogenic CO2 invasion into the Atlantic Ocean. Tellus 51B, 511 – 530.  

  39. Waugh , D. W. , Haine , T. W. N. and Hall , T. M. , 2004 . Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean . Deep-Sea Res . 51 , 1475 – 1491 .  

  40. Waugh , D. W. , Hall , T. M. and Haine , T. W. N . 2003. Relationships among Tracer Ages. J. Geophys. Res . 108 , https://doi.org/10.1029/2002JC001325 .  

  41. Waugh , D. W. , Vollmer M. K. , Weiss , R. E , Haine T. W. N. and Hall , T. M . 2002. Transit time distributions in Lake Issyk-Kul. Geophys. Res. Lett. 29, https://doi.org/10.1029/2002GL016201 .  

comments powered by Disqus