Start Submission Become a Reviewer

Reading: Rectifier effect in an atmospheric model with daily biospheric fluxes: impact on inversion c...

Download

A- A+
Alt. Display

Original Research Papers

Rectifier effect in an atmospheric model with daily biospheric fluxes: impact on inversion calculation

Authors:

Misa Ishizawa ,

University of Toronto, Toronto, ON M5S 3G3; Atmospheric Science and Technology Directorate, Environment Canada, Toronto, ON M3H 5T4, CA
X close

Douglas Chan,

Atmospheric Science and Technology Directorate, Environment Canada, Toronto, ON M3H 5T4, CA
X close

Kaz Higuchi,

Atmospheric Science and Technology Directorate, Environment Canada, Toronto, ON M3H 5T4, CA
X close

Shamil Maksyutov,

National Institute for Environmental Studies, Tsukuba 305-8506, JP
X close

Chiu-Wai Yuen,

University of Toronto, Toronto, ON M5S 3G3, CA
X close

Jing Chen,

University of Toronto, Toronto, ON M5S 3G3, CA
X close

Douglas Worthy

Atmospheric Science and Technology Directorate, Environment Canada, Toronto, ON M3H 5T4, CA
X close

Abstract

Atmospheric CO2 measurements showstrong synoptic variability. To understand the contribution of the synoptic signals on atmospheric CO2 inversion, we simulate the cases of biospheric fluxes with and without synoptic variations (referred to as ‘Synoptic’ and ‘Reference’, respectively) using an atmospheric transport model, and then perform inversion analyses with these biospheric CO2 concentration fields.

Results show the monthly and annually averaged CO2 concentration anomalies (Synoptic–Reference) are functions of the distance from the continental biospheric source regions. Remote sites (like Mauna Loa) show averaged monthly amplitude of ∼0.2 ppm, while continental sites show averaged monthly amplitudes of 1–2 ppm with maximum monthly amplitudes up to 7 ppm. Spatial scales of these monthly mean synoptic anomaly patterns may exceed 1000 km. These CO2 concentration patterns are the results of the interaction of the synoptic CO2 flux field and atmospheric transport, and may be referred to as the synoptic Rectifier Effect.

Inversion CO2 fluxes for 1992–1995 are obtained using biospheric background fields with and without synoptic biospheric flux variations. The maximum magnitude differences in estimated monthly flux for land and ocean regions are ∼0.4 and ∼0.2 GtC month-1, respectively. The average land sink increases by 0.19 GtC yr-1 while the average ocean sink decreases by 0.30 GtC yr-1.

How to Cite: Ishizawa, M., Chan, D., Higuchi, K., Maksyutov, S., Yuen, C.-W., Chen, J. and Worthy, D., 2006. Rectifier effect in an atmospheric model with daily biospheric fluxes: impact on inversion calculation. Tellus B: Chemical and Physical Meteorology, 58(5), pp.447–462. DOI: http://doi.org/10.1111/j.1600-0889.2006.00219.x
  Published on 01 Jan 2006
 Accepted on 5 Jul 2006            Submitted on 14 Jan 2006

References

  1. Andres , R. J. , Marland , G. and Bischoff , S . 1996 . Carbon dioxide emis-sions from fossil fuel combustion and cement manufacture 1751-1991 and an estimate of their isotopic composition and latitudi-nal distribution . In: 1993 Global Change Institute (eds. T. Wigley and D. Schimel ). Cambridge Univ. Press , New York , pp. 419 – 429 .  

  2. Baker , D. E , Law , R. M. , Gurney , K. R. , Rayner , R , Peylin , P. and co-authors. 2006. TransCom3 inversion intercomparison: impact of transport model error on the interannual variability of regional CO2 fluxes, 1988-2003. Global Biogeochem. Cycles 20, GB1002, https://doi.org/10.1029/2004GB002439 .  

  3. Brenkert , A. L . 1998. Carbon dioxide emission estimates from fossil-fuel burning, hydraulic cement production, and gas flaring for 1995 on a one degree grid cell basis. NDP-058A, CDIAC, ORNL, Oak Ridge, Tenn., USA.  

  4. Chan , D. , Yuen , C. W. , Higuchi , K. , Shashkov , A. , Liu , J. and co-authors. 2004. On the CO2 exchange between the atmosphere and the bio-sphere: the role of synoptic and mesoscale processes. Tellus 56B, 194 – 212.  

  5. Denning , A. S. , Fung , I. and Randall , D . 1995 . Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota . Nature 376 , 240 – 243 .  

  6. Denning , A. S. , Collatz , J. G. , Zhang , C. , Randall , D. A. , Berry , J. A. and co-authors. 1996a. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 1: surface carbon fluxes. Tellus 48B, 521 – 542.  

  7. Denning , A. S. , Randall , D. A. , Collatz , G. J. and Sellers , P. J . 1996b . Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 2: spatial and temporal variations of atmospheric CO2 . Tellus 48B , 543 – 567 .  

  8. Enting , I. G . 2002 . Inverse Problems in Atmospheric Constituent Trans-port . Cambridge Univ. Press , New York .  

  9. Fujita , D. , Ishizawa , M. , Malcsyutov , S. , Thornton , P. , Saeki , T. and co-authors 2003. Inter-annual variability of the atmospheric car-bon dioxide concentrations as simulated with global terrestrial bio-sphere models and atmospheric transport model. Tellus 55B, 530 – 546.  

  10. GLOBALVIEW-CO2. 2000. Cooperative Atmospheric Data Integration Project-Carbon Dioxide [CD-ROM], NOAA Clim. Model. And Diag. Lab. , Boulder, Colo. , USA.  

  11. Grell , G. , Dudhia , J. and Stauffer , D . 1995 . Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR/TN-398 . NCAR, Boulder, Colo ., USA .  

  12. Gurney , K. , Law , R. , Rayner , P. and Denning , A. S . 2000. TransCom 3 Experimental Protocol. Department of Atmospheric Science, Colorado State University, USA. Paper No. 707. (Available at http://transcom.colostate.edu/TransCom_3/transcom_3.html)  

  13. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626 – 630.  

  14. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Pak , B. C. and co-authors. 2004. Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cycles 18, GB1010, https://doi.org/10.1029/2003/GB002111 .  

  15. Gurney , K. R. , Chen , Y.-H. , Maki , T. , Kawa , S. R. , Andrews , A. and co-authors. 2005. Sensitivity of atmospheric CO2 inversinos to seasonal and interannual variations in fossil fuel emissions. J. Geophys. Res . 110 , D10308, https://doi.org/10.1029/2004JD005373 .  

  16. Hack , J. J. , Boville , B. A. , Briegleb , B. P. , Kiehl , J. T. , Rasch , P. J. and co-authors. 1993. Description of the NCAR community climate model (CCM2), NCAR/TN-382, NCAR, Boulder, Colo., USA.  

  17. Higuchi , K. , Worthy , D. E. J. , Chan , D. and Shashkov , A . 2003 . Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada . Tellus 55B , 115 – 125 .  

  18. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. and co-authors. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am.MeteoroL Soc. 77, 437 – 471.  

  19. Maksyutov , S. and Inoue , G . 2000. Vertical profiles of radon and CO2 simulated by the global atmospheric transport model. In: CGER Super-computer activity report, 1039-20007, CGER NIES, Tsukuba, Japan, pp. 39 – 41.  

  20. Nalcazawa , T. , Ishizawa , M. , Higuchi , K. and Trivett , N. B. A . 1997 . Two curve fitting methods applied to CO2 flask data . Environmetrics 8 , 197 – 218 .  

  21. Randerson , J. T. , Matthew , M. V. , Conway , T. J. , Fung , I. Y. and Field , C. B . 1997 . The contribution of terrestrial sources and sinks to trends in the seasonal cycles of atmospheric carbon dioxide . Global Bio-geochem. Cycles 11 , 553 – 560 .  

  22. Rayner , P. J. , Enting , I. G. , Francey , R. J. and Langenfelds , R . 1999 . Reconstructing the recent carbon cycle from atmospheric CO2, 13C and 02/N2 observations . Tellus 51B , 213 – 232 .  

  23. Takahashi , T. , Wanninkhof , R. H. , Feely , R. A. , Weiss , R. F. , Chipman , D. W. , and co-authors. 1999. Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference. In: Proceedings of the 2nd International Symposium: CO2 in the Oceans (ed Y. Nojiri). Tsukuba, Japan.  

  24. Tarantola , A . 1987 . Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation . Elsevier Sci ., New York .  

  25. Thornton , P. E. , Law , B. E. , Gholz , H. L. , Clark , K. L. , Falge , E. and co-authors. 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needle-leaf forests. Agric. For MeteoroL 113, 185 – 222.  

  26. Thoning , K. W. , Tans , P. P. and Komhyr , W. D . 1989 . Atmospheric carbon dioxide at Mauna Loa Observatory, 2. Analysis of the NOAA/GMCC data, 1974-1985 . J. Geophys. Res . 94 , 8549 – 8565 .  

  27. Tiedtke , M . 1989 . A comprehensive mass flux scheme for cumulus pa-rameterization in large-scale models . Mon. Wea. Rev . 117 , 1779 – 1800 .  

  28. Trivett , N. B. A. and Higuchi , K . 1989. Trends and seasonal cycles of atmospheric CO2 over Alert, Sable Island, and Cape St. James, as analyzed by forward stepwise regression technique. pp. 27-42. In: The Statistical Treatment of CO2 Data Records (ed W. P. Elliott). Air Resources Laboratory, Silver Spring, Maryland, USA.  

comments powered by Disqus