Start Submission Become a Reviewer

Reading: Development of an automatic chamber system for long-term measurements of CO2 flux from roots

Download

A- A+
Alt. Display

Original Research Papers

Development of an automatic chamber system for long-term measurements of CO2 flux from roots

Authors:

Masako Dannoura ,

Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, JP
X close

Yuji Kominami,

Kansai Research Center, Forestry and Forest Products Research Institute, 68 Nagaikyutaro, Momoyama, Fushimi, Kyoto 612-0855, JP
X close

Koji Tamai,

Kyushu Research Center, Forestry and Forest Products Research Institute, 4-11-16 Kurokami, Kumamoto 860-0862, JP
X close

Mayuko Jomura,

Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, JP
X close

Takafumi Miyama,

Kansai Research Center, Forestry and Forest Products Research Institute, 68 Nagaikyutaro, Momoyama, Fushimi, Kyoto 612-0855, JP
X close

Yoshiaki Goto,

Department of Meteorological Environment, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, JP
X close

Yoichi Kanazawa

Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, JP
X close

Abstract

To separate CO2 efflux from roots (Rr) and soil (Rs), we developed a system to measure Rr continuously. Using this system, seasonal variation in Rr was obtained in a temperate forest in Japan. We measured Rs, CO2 efflux from mineral soil (Rm) and environmental factors simultaneously, and the characteristic and seasonality of Rr were analysed in comparison with Rs. Rr and Rs showed different responses to soil water content: Rs decreased with decreasing soil water content, whereas Rr peaked at relatively low soil water content. Rr/Rs decreased from 64.8% to 27.3% as soil water content increased from 0.075 to 0.225 cm cm-3. The relationship between respiration and temperature appears to change seasonally in response to phenological and biological factors. Rr showed clear seasonal variation as a function of soil temperature. During the growing period, Rr exhibited a higher rate at the same soil temperature than during other periods, which may be due to phenological influences such as fine root dynamics. Rs decreased during the summer despite high soil temperatures. The seasonal peak for Rs occurred earlier than that for soil temperature. Rr/Rs ranged between 25% and 60% over the course of the year.

How to Cite: Dannoura, M., Kominami, Y., Tamai, K., Jomura, M., Miyama, T., Goto, Y. and Kanazawa, Y., 2006. Development of an automatic chamber system for long-term measurements of CO2 flux from roots. Tellus B: Chemical and Physical Meteorology, 58(5), pp.502–512. DOI: http://doi.org/10.1111/j.1600-0889.2006.00216.x
4
Views
  Published on 01 Jan 2006
 Accepted on 30 Jun 2006            Submitted on 15 Jan 2006

References

  1. Andrews , J. A. , Harrison , K. G. , Matamala , R. and Schlesinger , W. H . 1999 . Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE) . Soil Sci. Soc. Am. J . 63 , 1429 – 1435 .  

  2. Asalcawa , D. , Mochizuki , H. , Yanagi , Y. , Suzuki , T. , Nagao , S. and co-authors. 2006. Changes in elemental composition, molecular weight and iHNIMR spectra of the water-extractable hydrophobic acid fraction in Cambisols with season and soil depth. Soil Sci. Plant Nutr. 52, 362 – 371.  

  3. Baldocchi , D. , Falge , E. , Gu , L. , Olson , R. , Hollinger , D. , Running , S. and co-authors. 2001. A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. MeteoroL Soc. For. 82, 2415 – 2434.  

  4. Bhupinderpal-Shingh , Nordgren , A. , Lofvenius , M. 0., Hogberg, M. N., Mellander, P. E. and co-authors. 2003. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: ex-tending observations beyond the first year. Plant Cell Environ. 26, 1287 – 1296.  

  5. Bond-Lamberty , B. , Wang , C. and Gower , S. T . 2004 . A global relation-ship between the heterotrophic and autotrophic components of soil respiration? Global Change Biol . 10 , 1756 – 1766 .  

  6. Boone , R. D. , Nadelhoffer , K. J. , Canary , J. D. and Kaye , J. P . 1998 . Roots exert a strong influence on the temperature sensitivity of soil respiration . Nature 396 , 570 – 572 .  

  7. Burton , A. J. , Pregitzer , K. S. , Zogg , G. P. and Zak , D. R . 1996 . Latitu-dinal variation in sugar maple fine root respiration . Can. J. For Res . 26 , 1761 – 1768 .  

  8. Burton , A. J. , Pregitzer , K. S. , Zogg , G. P. and Zak , D. R . 1998 . Drought reduces root respiration in sugar maple forests . EcoL AppL 8 , 771 – 773 .  

  9. Crill , P.M . 1991 . Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil . Global Biogeochem. Cycles 5 , 319 – 334 .  

  10. Dannoura , M. , Kominami , Y. , Hirano , Y. , Kanazawa , Y. and Goto , Y . 2005. Measurement of root respiration using potted Japanese cedar. Mem. Grad. School Sci. & Techonol., Kobe Univ. 23-A, 67 – 73.  

  11. Dannoura , M. , Kominami , Y. , Goto , Y. and Kanazawa , Y . 2006a. Estima-tion of root biomass and root surface area of a broad-leaved secondary forest in the southern part of Kyoto prefecture. J. Jpn. For Sci. 88 ( 2 ), 120-125. (In Japanese with English summary)  

  12. Dannoura , M. , Kominami , Y. , Tamai , K. , Goto , Y. , Jomura , M. and co-authors. 2006b. Short-term evaluation of the contribution of root res-piration to soil respiration in a broad-leaved secondary forest in the southern part of Kyoto Prefecture. J. Agric. Meteorol. 62(1), 15-20. (In Japanese with English summary)  

  13. Fitter , A. H. , Graves , J. D. , Self , G. K. , Brown , T. K. , Bogie , D. S. and co-authors. 1998. Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia 114 , 20 – 30.  

  14. Giardina , C. P. , Binlcley , D. , Ryan , M. G. , Fownes , J. H and Senock, R. S. 2004. Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139, 545 – 550.  

  15. Giardina , C. P. and Ryan , M. G. 2002. Total belowground carbon alloca-tion in a fast growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems 5, 487 – 499.  

  16. Goto , Y. , Kominami , Y. , Miyama , T. , Tamai , K. and Kanazawa , Y . 2003. Aboveground biomass and net primary production of a broad-leaved secondary forest in the southern part of Kyoto prefecture, central Japan. Bull. For For Prod. Res. Inst. 387 , 115 – 147. (In Japanese with English summary)  

  17. Goulden , M. L. , Munger , J. W. , Fan , S. M. , Daube , B. C. and Wofsy , S. C. 1996. Exchange of carbon dioxide by a deciduous for-est: response to interannual climate variability. Science 271, 1576 – 1578.  

  18. Hanson , P. J. , Edwards , N. T. , Garten , C. T. and Andrews , J. A. 2000. Separating root and soil microbial contribution to soil respiration: a review of methods and observations. Biogeochemistiy 48, 115 – 146.  

  19. Irvine , J. , Law , B. E. and Kurpius , M. R. 2005. Coupling of canopy gas exchange with root and rhizosphere respiration in a semi-arid forest. Biogeochemisby 73, 271 – 282.  

  20. Jackson , R. B. , Canadell , J. , Ehleringer , J. R. , Mooney , H. A. , Sala, 0. E. and co-authors. 1996. A global analysis of root distribution for terrestrial biomes. Oecologia 108, 389 – 411.  

  21. Jackson , R. B. , Mooney , H. A. and Schulze , E. D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Ecology 94, 7362 – 7366.  

  22. Jomura , M. , Kominami , Y. and Kanazawa , Y . 2005. Long-term measure-ments of the CO2 flux from coarse woody debris using an automated chamber system. J. Jpn. For Sci. 87 , 138 – 144. (In Japanese with English summary)  

  23. Kominami , Y. , Miyama , T. , Tamai , K. , Nobuhiro , T. and Goto , Y . 2003 . Characteristics of CO2 flux over a forest on complex topography . Tellus 55B , 313 – 321 .  

  24. Lavigne , M. B. , Ryan , M. G. , Anderson , D. E. , Baldocchi , D. D. , Crill , P. and co-authors. 1997. Comparing nocturnal eddy covariance measure-ments to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. J. Geophys. Res. Atmos. 102 , 28977 – 28985.  

  25. Lee , M. , Nalcane , K. , Nalcatsubo , T. and Koizumi , H . 2003 . Seasonal changes in the contribution of root respiration to total soil respiration in a cool temperate deciduous forest . Plant Soil 255 , 311 – 318 .  

  26. Mielnick , P. C. and Dugas , W. A . 2000 . Soil CO2 flux in a tall grass prairie . Soil Biol. Biochem . 32 , 221 – 228 .  

  27. Miyama , T. , Kominami , Y. , Tamai , K. , Goto , Y . 2005 . Seasonal changes in nocturnal foliar respiration in a mixed deciduous and evergreen broadleaved forest . J. Agric. Meteorol . 60 , 753 – 756 .  

  28. Nakane , K. and Lee , N. J . 1995 . Simulation of soil carbon cycling and carbon balance following clear-cutting in a mid-temperate forest and contribution to the sink of atmospheric CO2 . Vegetatio 121 , 147 – 156 .  

  29. Nakane , K. , Kohno , T. and Horikoshi , T . 1996 . Root respiration rate before and just after clear felling in a mature, deciduous, broadleaved forest . EcoL Res . 11 , 111 – 119 .  

  30. Nobuhiro , T. , Tamai , K. , Kominami , Y. , Miyama , T. , Goto , Y. and co-authors. 2003. Development of the IRGA enclosed-chamber sys-tem for soil CO2 efflux measurement and its application to a spatial variation measurement. J. For Res. 8, 297 – 301.  

  31. Ohashi , M. , Gyokusen , K. and Saito , A . 2000 . Contribution of root respi-ration to total soil respiration in Japanese cedar (Ctyptomeria japonica D. Don) artificial forest . EcoL Res . 15 , 323 – 333 .  

  32. Rochette , P. , Angers , D. A. and Flanagan , L. B. 1999. In situ measure-ments of maize residue decomposition using natural abundance of 13002. Soil Sci. Soc. Am. J. 113, 1385 – 1393.  

  33. Ryan , M. G. and Law , B. E . 2005 . Interpreting, measuring, and modeling soil respiration . Biogeochemistiy 73 , 3 – 27 .  

  34. Ryan , M. G. , Hubbard , R. M. , Pongracic , S. , Raison , R. J. and McMurtrie , R. E . 1996 . Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status . Tree PhysioL 16 , 333 – 343 .  

  35. Tamai , K. , Kominami , Y. , Miyama , T. and Goto , Y . 2005a . Temporal Fluctuations in the CO2 efflux on a forest floor—the case of an ex-tremely immature forest soil . J. Agric. Meteorol . 60 ( 5 ), 773 – 776 .  

  36. Tamai , K. , Kominami , Y. , Miyama , T. and Goto , Y . 2005b . The estimation of time series data for soil respiration based on soil temperature and soil moisture content ratio and its special variation in a small mountainous catchment: in the case of Weatherd granite region in southern Kyoto prefecture . J. Jpn. For Soc . 87 , 331 – 339 .  

  37. Tang , J. , Misson , L. , Gershenson , A. , Cheng , W. and Goldstein , A. H . 2005. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the sierra Nevada Mountains. Agric. For Meteorol. 132 , 212 – 227. (In Japanese with English sum-mary).  

  38. Trumbore , S . 2000 . Age of soil organic matter and soil respiration: ra-diocarbon constraints on belowground C dynamics . Ecol. AppL 10 , 399 – 411 .  

  39. Zogg , G. P. , Zak , D. R. , Burton , A. J. and Pregitzer , K. S. 1996. Fine root respiration in northern hardwood forest in relation to temperature and nitrogen availability. Tree PhysioL 16, 719 – 725.  

comments powered by Disqus