Start Submission Become a Reviewer

Reading: Simulating dynamics of –13C of CO2 in the planetary boundary layer over a boreal fore...

Download

A- A+
Alt. Display

Original Research Papers

Simulating dynamics of –13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing

Authors:

Baozhang Chen ,

Department of Geography and Program in Planning, University of Toronto, 100 St. George Street, Room 5047, Toronto, ON M5S 3G3, CA
X close

Jing M. Chen,

Department of Geography and Program in Planning, University of Toronto, 100 St. George Street, Room 5047, Toronto, ON M5S 3G3, CA
X close

Pieter P. Tans,

National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Climate Monitoring Division, 325 Broadway, Boulder, CO 80305, US
X close

Lin Huang

Atmospheric Science and Technology Directorate, Science & Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, ON M3H 5T4, CA
X close

Abstract

Stable isotopes of CO2 contain unique information on the biological and physical processes that exchange CO2 between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of δ13C and thus the global δ13C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of 13CO2 in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49°52’29.9”N, 81°34’12.3”W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season.We examine the interaction of the biosphere and the atmosphere through the PBL with respect to δ13C on diurnal and seasonal scales. The simulated annual mean vertical gradient of δ13C in the PBL in the vicinity of the FRD tower was about 0.25‰ in 1999. The δ13C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO2. Most of the vertical gradient (96.5% ±) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%±) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on δ13C of CO2 dynamics in PBL, moreover, was confined to the near surface layers (less than 350 m).

How to Cite: Chen, B., Chen, J.M., Tans, P.P. and Huang, L., 2006. Simulating dynamics of –13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing. Tellus B: Chemical and Physical Meteorology, 58(5), pp.537–549. DOI: http://doi.org/10.1111/j.1600-0889.2006.00213.x
1
Views
  Published on 01 Jan 2006
 Accepted on 30 Jun 2006            Submitted on 14 Jan 2006

References

  1. Bakwin , P. S. , Tans , P. P. , White , J. W. C. and Andres , R. J . 1998 . Determi-nation of the isotopic (13C/12C) discrimination by terrestrial biology from a global network of observations . Global Biogeochem Cycles . 3 , 555 – 562 .  

  2. Bristow , K. L. and Campbell , G. S . 1984 . On the relationship between incoming solar radiation and daily maximum and minimum tempera-ture . Agric. For MeteoroL 31 , 159 – 166 .  

  3. Chen , B. , Chen , J. M. , Liu , J. , Chan , D. , Higuchi , K. and co-authors. 2004. A Vertical Diffusion Scheme to estimate the atmospheric rectifier ef-fect. J. Geophys. Res . 109 , D04306, https://doi.org/10.1029/2003JD003925 .  

  4. Chen , B. , Chen , J. M. and Worthy , D . 2005a . Interannual variability in the atmospheric CO2 rectification over a boreal forest region . J. Geophys. Res . 110 , D16301 , https://doi.org/10.1029/2004JD005546 .  

  5. Chen , B. , Chen , J. M. , Huang , L. and Tans , P. P . 2006. Modeling dynam-ics of stable carbon isotopic exchange between boreal ecosystems and the atmosphere. Global Change Biol. 12, https://doi.org/10.1111/j.1365-2486.2006.01200.x .  

  6. Chen , J. M. , Menges , C. H. and Leblanc , S. G . 2005b . Global mapping of foliage clumping index using multi-angular satellite data . Remote Sens. Environ . 97 , 447 – 457 .  

  7. Chen , J. M. , Pavlic , G. , Brown , L. , Cihlar , J. , Leblanc , S. G. and co-authors. 2002. Validation of Canada-wide leaf area index maps using ground measurements and high and moderate resolution satellite im-agery. Remote Sens. Environ. 80, 165 – 184.  

  8. Ciais , R , Tans , P. P. , White , J. W. C. , Trolier , M. , Francey , R. J. and co-authors . 1995a. Partitioning of ocean and land uptake of CO2 as inferred by 313C measurements from NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res . 100 ( D3 ), 5051-5070 .  

  9. Ciais , P. , Tans , P. P. , Trolier , M. , White , J. W. C. , Francey , R. J . 1995b . A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2 . Science 269 , 1096 – 1101 .  

  10. Cihlar , J. , Beaubien , J. , Latifovic , R. and Simard , G . 1999. Land cover of Canada 1995 Version 1.1. Digital data set documentation, Natural Resources Canada, Ottawa, Ontario. ftp://ftp2.ccrs.nrcamgc.ca/ftp/ad/EMS/landcover95/.  

  11. Denning , A. S. , Collatz , J. G. , Zhang , C. , Randall , D. A. Berry , J. A. and co-authors. 1996a. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 1: Surface carbon fluxes. Tellus 48B, 521 – 542.  

  12. Denning , A. S. , Fung , I. Y. and Randall , A. D . 1995 . Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota . Nature 376 , 240 – 243 .  

  13. Denning , A. S. , Randall , D. A. , Collatz , G. J. and Sellers , P. J . 1996b . Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 2: spatial and temporal variations of atmospheric CO2 . Tellus 48B , 543 – 567 .  

  14. Denning , A. S. , Takahashi , T. and Friedlingstein , P . 1999 . Can a strong atmospheric CO2 rectifier effect be reconciled with a “reasonable” carbon budget? Tellus 51B , 249 – 253 .  

  15. Enting , I. G. , Trudinger , C. M. and Francey , R. J . 1995 . A synthesis inversion of the concentration and 313C of atmospheric CO2 . Taus 47B , 35 – 52 .  

  16. Fan , S. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. and co-authors. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442 – 446.  

  17. Farquhar , G. D. and Lloyd , J . 1993. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Stable Isotopes and Plant Carbon-Water Relations, (edsJ. R. Ehleringer, A. E. Hall and G. D. Farquhar). Academic, San Diego, CA, pp. 47 – 70.  

  18. Farquhar , G. D. , Ehleringer , J. R. and Hubick , K. T . 1989 . Carbon isotope discrimination and photosynthesis . Ann. Rev. Plant Physiol. Plant Mol. Biol . 40 , 503 – 537 .  

  19. GLOBALVIEW-CO 2, 2005. Cooperative Atmospheric Data Integra-tion Project: Carbon dioxide [CD-ROM]. NOAA Clim. Monit. and Diag. Lab., Boulder, Colo (Available via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW).  

  20. Gurney , R. K. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626 – 630.  

  21. Higuchi , K. and co-authors. 2003. Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada. Tellus 55B, 115 – 125.  

  22. Huang , L. , Norman , A. L. , Allison , C. E. , Francey , R. J. , Ernst , D. and co-authors. 2003. Traceability — maintenance for high precision stable isotope measurementof air-0O2 by Lab-Carbonate-Standards at MSC: application to the Inter-Comparision Program (alert, Canada) with CSIRO, In: The report to the 11th WMO/IAEA Meeting of Experts on CO2 Concentration and Related Tracer Measurement Techniques, Tokyo, Japan, Sept. 2001, No. 148, pp. 9 – 16.  

  23. Keeling , C. D. , Bacastow , R. B. , Carter , A. E , Piper , S. C. , Whorf , T. P. and co-authors. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds. I: analysis of observed data. In: Aspects of climate variability in the pacific and western americas (edited by D.H. Peterson, publisher: AGU, Washington, DC). Geo-phys. Monogr. 55, 165 – 236.  

  24. Lacelle , B . 1998. Canada's soil organic carbon database. In: Soil pro-cesses and the carbon cycle, (edsR. Lal, J. Kimbla, R. F. Follett and B. A. Stewart). CRC Press, Boca Raton, 81 – 92.  

  25. Leblanc , S. G. , Chen , J. M. , White , H. P. , Latifvic , R. , Roujean , J. R. and co-authors. 2005. Canada-wide foliage clumping index mapping from multi-angular POLDER measurements. Can. J. Remote Sens. 31, 364 – 376.  

  26. Lloyd , J. and co-authors. 1996. Vegetation effects on the isotopic com-position of atmospheric CO2 at local and regional scales: theo-retical aspects and a comparison between rain forest in Amazo-nia and a boreal forest in Siberia. Aust. J. Plant Physiol. 23, 371 – 399.  

  27. Masarie , K. A. and Tans , P. P. 1995. Extension and integration of atmo-spheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res . 100(11), 593 – 1610.  

  28. Pearman , G. I. and Hyson , P. 1980. Activities of the global biosphere as reflected in atmospheric CO2 records. J. Geophys. Res . 85 , 4468 – 4474.  

  29. Stephens , B. B . 1999. Field-based atmospheric 02 measuremnets and the ocean carbon cycle. PhD Thesis. Scripps Institution of Oceanohraphy, La Jolla, California, 221 pp.  

  30. Stephens , B. B. , Keeling , R. F. , Tan , P. P. , Heimann , M. , Six , K. D. , Murnane , R. and co-authors. 1998. Testing global ocean carbon cycle models using measurements of atmospheric 02 and CO2 concentra-tion. Global Biogeochem. Cycles 12, 213 – 230.  

  31. Stephens , B. B. , Wofsy , S. C. , Keeling , R. F. , Tan , P. P. and Potosnalc , M. J . 2000 . The CO2 budget and rectification airborne study: strategies for measuring rectifiers and regional. Geophys. Monogr 14 , 311 - 324 .  

  32. Tans , P. P. 1980. On calculating the transfer of carbon-13 in resevoir models of the carbon cycle . Tellus 32 , 464 – 469 .  

  33. Tans , P. R , Berry , J. A. and Keeling , R. F . 1993 . Oceanic 1302c ob-servation: A new window on CO2 uptake by the oceans . Global Bio-geochem. Cycles 7 , 353 – 368 .  

  34. Tarnocai , C. , 1996. The amount of organic carbon in various soil orders and ecological provinces in Canada. In: Soil Processes and the Carbon Cycle, (edsR. Lal, J. Kimbla, R. F. Follett and B. A. Stewart). CRC Press, Boca Raton, FL, 81 – 92.  

  35. Winslow , J. C. , Hunt , E. R. Jr and Piper , S. C . 2001 . A globally applicable model of daily solar irradiance estimated from air temperature and precipitation data . EcoL Model . 143 , 227 – 243 .  

comments powered by Disqus