Start Submission Become a Reviewer

Reading: A test of sensitivity to convective transport in a global atmospheric CO2 simulation

Download

A- A+
Alt. Display

Original Research Papers

A test of sensitivity to convective transport in a global atmospheric CO2 simulation

Authors:

H. Bian ,

UMBC Goddard Earth Science and Technology Center, NASA Goddard Space Flight Center, Greenbelt, MD 20771, US
X close

S. R. Kawa,

NASA Goddard Space Flight Center, Greenbelt, MD 20771, US
X close

M. Chin,

NASA Goddard Space Flight Center, Greenbelt, MD 20771, US
X close

S. Pawson,

NASA Goddard Space Flight Center, Greenbelt, MD 20771, US
X close

Z. Zhu,

NASA Goddard Space Flight Center, Greenbelt, MD 20771, US
X close

P. Rasch,

National Center for Atmospheric Research, Boulder, CO 80307, US
X close

S. Wu

Harvard University, Cambridge, MA 02138, US
X close

Abstract

Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. Global CO2 in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA’s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

How to Cite: Bian, H., Kawa, S.R., Chin, M., Pawson, S., Zhu, Z., Rasch, P. and Wu, S., 2006. A test of sensitivity to convective transport in a global atmospheric CO2 simulation. Tellus B: Chemical and Physical Meteorology, 58(5), pp.463–475. DOI: http://doi.org/10.1111/j.1600-0889.2006.00212.x
  Published on 01 Jan 2006
 Accepted on 3 Jul 2006            Submitted on 9 Jan 2006

References

  1. Andres , R. J. , Marland , G. , Fung , I. and Matthews , E . 1996 . Distri-bution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990 Gobal Biogeochem . Cycles 10 , 419 – 429 .  

  2. Aubinet , M. , Chermanne , B. , Vandenhaute , M. , Longdoz , B. , Yernaux , M. and co-authors. 2001. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric. For MeteoroL 108, 293 – 315.  

  3. Battle , M. , Bender , M. L. , Tans , P. P. , White , J. W. C. , Ellis , J. T. and co-authors . 2000. Global carbon sinks and their variability inferred from atmospheric 02 and dl3C. Science 287, 2467 – 2470 .  

  4. Bey , I. , Jacob , D. J. , Yantosca , R. M. , Logan , J. A. , Field , B. D. and co-authors. 2001. Global modeling of tropospheric chemistry with as-similated meteorology: model description and evaluation. J. Geophys. Res . Vol. 106 ( 019 ), 23 073-23 078 (2001JD000807).  

  5. Bloom , S. , da Silva , A. , Dee , D. , Bosilovich , M. , Chern, J-D and co-authors. 2005. Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System-Version 4, NASA/TM-2005-104606, Vol. 26.  

  6. Bousquet , R , Peylin , P. , Ciais , P. , Le Quere , C. , Friedlingstein , P. and co-authors . 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290 , 1342 – 1346 .  

  7. Chin , M. , Ginoux , R , Kinne , S. , Tones, 0., Holben, B. N. and co-authors. 2002. Tropospheric aerosol optical thickness from the GO-CART model and comparisons with satellite and sun photometer mea-surements. J. Atmos. Sci . 59, 461 – 483.  

  8. Chin , M. , Chu , A. , Levy , R. , Remer , L. , Kaufman , Y. and co-authors. 2004. Aerosol distribution in the northern hemisphere dur-ing ACE-Asia: results from global model, satellite observations, and sunphotometer measurements. J. Geophys. Res ., 109 , https://doi.org/10.1029/2004JDO04829 .  

  9. Collins , B. , Leo , D. , Hack , J. , Randall , D. , Rasch , P. and co-authors. 2004. Description of the NCAR Community Atmosphere Model (CAM 3.0), http://www.ccsm.ucar.edu/models/atm-cam/docs/description/.  

  10. Denning , A. S. , Collatz , G. J. , Zhang , C. , Randall , D. A. , Berry , J. A. and co-authors. 1996. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 1: surface carbon fluxes. Tellus 48B, 521 – 542.  

  11. Denning , A. S. , Holzer , M. , Gurney , K. R. , Heimann , M. , Law , R. M. and co-authors. 1999. Three-dimensional transport and concentration of SF6-A model intercomparison study (TransCom 2). Tellus Ser. B, 51 , 266 – 297.  

  12. Douglass , A. R. , Schoeberl , M. R. , Rood , R. B. and Pawson , S . 2003. Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model J. Geophys. Res . 108 ( 09 ), 4259, https://doi.org/10.1029/2002JD002696 .  

  13. Eneroth , K. , Kjellström , E. and Holmen , H . 2003a . A trajectory clima-tology for Svalbard investigating how atmospheric flow patterns influ-ence observed tracers concentrations . Phys. Chem. Earth 28 , 1191 – 1203 .  

  14. Eneroth , K. , Kjellstrom , E. and Holmen K . 2003b . Interannual and sea-sonal variations in transport to a measuring site in western Siberia and their impact on the observed atmospheric CO2 mixing ratio . J. Geophys. Res . 108 ( 021 ), 4660 .  

  15. Engelen , R. , Denning , A. S. , Gurney , K. R. and TransCom3 modelers. 2002. On error estimation in atmospheric CO2 inversions. J. Geophys. Res . 107 ( D224635 ), https://doi.org/10.1029/2002JD002195 .  

  16. Fan , S. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. and co-authors. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442 – 446.  

  17. Gerbig , C. , Lin , J. C. , Wofsy , S. C. , Daube , B. C. , Andrews , A. E. and co-authors. 2003. Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent. 1: observed spatial variability from airborne platforms. J. Geophys. Res . 108 ( 024 ), 4756.  

  18. Gilliland , A. B. and Hartley , D. E . 1998 . Interhemispheric transport and the role of convective parameterizations . J. Geophys. Res . 103 ( 017 ), 22 039-22 046 .  

  19. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626 – 630.  

  20. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2003. TransCom 3 CO2 inversion intercomparison. 1: annual mean control results and sensitivity to transport and prior flux information. Tellus 55B, 555 – 579.  

  21. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Pak , B. C. and co-authors. 2004. Transcom 3 inversion intercomparison: model mean  

  22. results for the estimation of seasonal carbon sources and sinks . Global Biogeochem. Cycles 18, GB1010, https://doi.org/10.1029/2003GB002111 .  

  23. Hack , J. J . 1994 . Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2) . J. Geophys. Res . 99 , 5551 – 5568 .  

  24. Intergovernmental Panel on Climate Change (IPCC) . 2001. Climate Change 2001: Synthesis Report: Third Assessment Report of the Inter-governmental Panel on Climate Change, Cambridge University Press, New York.  

  25. Kawa , S. R. , Erickson BI, D. J., Pawson, S. and Zhu, Z. 2004. Global CO2 transport simulations using meteorological data from the NASA data assimilation system. J. Geophys. Res . 109 ( D18312 ), https://doi.org/10.1029/2004JDO04554 .  

  26. Law , R. M. , Rayner , P. J. , Denning , A. S. , Erickson , D. , Fung , I. Y. and co-authors. 1996. Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Global Biogeochem. Cycles 10, 783 – 796.  

  27. Li , Q. B. , Jiang , J. H. , Wu , D. L. , Read , W. G. , Livesey , N. J. and co-authors. 2005. Convective outflow of South Asian pollution: a global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett. 32(L14826) .  

  28. Lin , S. and Rood , R. B . 1996 . Multidimensional flux-form semi-Lagrangian transport schemes . Mon. Weather Rev . 124 , 2046 – 2070 .  

  29. Mahowald , N. M. , Rasch , P. J. and Prinn , R. G . 1995. Cumulus parame-terizations in chemical transport models. J. Geophys. Res . 100 ( D12 ), 26 173-26 189.  

  30. Malcsyutov , S. , Machida , T. , Mulcai , H. , Patra , P. K , Nalcazawa, T. and TransCom 3 modelers. 2003. Effect of recent observations on Asian CO2 flux estimates by transport model inversions. Tellus 55B, 522 – 529.  

  31. Millet , D. B. , Jacob , D. J. , Turquety , S. , Hudman , R. C. , Wu , S. and co-authors. 2006. Formaldehyde distribution over North America: impli-cations for satellite retrievals of formaldehyde columns and isoprene emission. J. Geophys. Res ., in press.  

  32. Murayama , S. , Taguchi , S. and Higuchi , K . 2004 . Internannual varia-tion in the atmospheric CO2 growth rate: role of atmospheric trans-port in the Northern Hemisphere . J. Geophys. Res . 109 ( D02305 ), https://doi.org/10.1029/2003JD003729 .  

  33. Olivie , D. J. L. , van Velthoven , P. F. J. , Beljaars , A. C. M. and Kelder , H. M . 2004. Comparison between archived and off-line diagnosed con-vection mass fluxes in the chemistry transport model TM3. J. Geophys. Res . 109 ( D11303 ), https://doi.org/10.1029/2003JD004036 .  

  34. Olsen , S. C. and Randerson , J. T . 2004 . Differences between surface and column atmospheric CO2 and implications for carbon cycle research . J. Geophy. Res . 109 ( D02301 ), https://doi.org/10.1029/2003JD003968 .  

  35. Palmer , P. I. , Jacob , D. J. , Jones , D. B. A. , Heald , C. L. , Yantosca , R. M. and co-authors. 2003. Inverting for emissions of carbon monox-ide from Asia using aircraft observations over the western Pacific. J. Geophys. Res . 108 ( D21 ), 8828, https://doi.org/10.1029/2003JD003397 . Randerson, J. T., Thompson, M. V, Conway, T. J., Fung, I. Y. and Field, C. B.1997. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. GlobalBiogeochem. Cycles 11 , 535 – 560.  

  36. Randerson , J. T. , van der Werf , G. R. , Collatz , G. J. , Giglio , L. , Still , C. J. and co-authors. 2005. Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and d13CO2. Global Biogeochem. Cycles 19 (Art. no. GB2019).  

  37. Rannilc , U. , Aubinet , A. , Kurbanmuradov , O. , Sabelfeld , K. K. , Marklca-nen, T. and co-authors. 2000. Footprint analysis for measurements over a heterogeneous forest. Boundary Layer MeteoroL 97 , 137 – 166. Suntharalingam, P., Randerson, J. T., Krakauer, N., Jacob, D. J. and Logan, J. A. 2005. The influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: implica-tions for inversion analyses. Global Biogeochem. cycles 19(GB4003), https://doi.org/10.1029/2005GB002466 .  

  38. Takahashi , T. , Sutherland , S. C. , Sweeney , C. , Poisson , A. , Metzl , N. and co-authors. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. 11 49, 1601 – 1622.  

  39. Tans , P. P. , Fung , I. Y. and Takahashi , T . 1990 . Observational constraints on the global atmospheric CO2 budget. Science 247 , 1431 – 1438. Van der Werf, G. R., Randerson, J. T., Collatz, G. J. and Giglio, L . 2003. Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biol . 9 , 547 – 562 .  

  40. Van der Werf , G. R. , Randerson , J. T. , Collatz , G. J. , Giglio , L. , Kasibhatla , P. S. and co-authors. Continental-scale partitioning of fire emissions during the 1997-2001 El Nino/La Nino period. Science 303, 73 – 76.  

  41. Yi , C. , Davis , K. J. , Bakwin , P. S. , Denning , A. S. , Zhang, N. and co-authors. 2004. Observed covariance between ecosystem carbon exchange and atmospheric boundary layer dynamics at a site in northern Wisconsin. J. Geophys. Res . 109 ( D08302 ), https://doi.org/10.1029/2003JDO04164 .  

  42. Zender , C. S. , Bian , H. and Newman , D . 2003 . The mineral dust en-trainment and deposition (DEAD) model : description and global dust distribution J. Geophys. Res . 108 , 4416 .  

  43. Zhang , G. J. and McFarlane , N. A . 1995 . Sensitivity of climate simu-lations to the parameterization of cumulus convection in the Cana-dian climate center general-circulation model . Atmos. Ocean 33 , 407 – 446 .  

comments powered by Disqus