Start Submission Become a Reviewer

Reading: Biogeophysical effects of CO2 fertilization on global climate

Download

A- A+
Alt. Display

Original Research Papers

Biogeophysical effects of CO2 fertilization on global climate

Authors:

G. Bala ,

Energy and Environment Directorate, Lawrence Livermore National Laboratory Livermore, CA 94550, US
X close

K. Caldeira,

Department of Global Ecology, Carnegie Institution, Stanford, CA 94305, US
X close

A. Mirin,

Energy and Environment Directorate, Lawrence Livermore National Laboratory Livermore, CA 94550, US
X close

M. Wickett,

Energy and Environment Directorate, Lawrence Livermore National Laboratory Livermore, CA 94550, US
X close

C. Delire,

ISE-M, Université Montpellier II, 34095 Montpellier Cedex 5, FR
X close

T. J. Phillips

Energy and Environment Directorate, Lawrence Livermore National Laboratory Livermore, CA 94550, US
X close

Abstract

CO2 fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO2-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multicentury simulations: a ‘Control’ simulation with no emissions and a ‘Physiol-noGHG’ simulation where physiological changes occur as a result of prescribed CO2 emissions, but where CO2-induced greenhouse warming is not included. In our simulations, CO2 fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 yr. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal timescales, the CO2 uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO2-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century timescales, there is the prospect for net warming from CO2 fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

How to Cite: Bala, G., Caldeira, K., Mirin, A., Wickett, M., Delire, C. and Phillips, T.J., 2006. Biogeophysical effects of CO2 fertilization on global climate. Tellus B: Chemical and Physical Meteorology, 58(5), pp.620–627. DOI: http://doi.org/10.1111/j.1600-0889.2006.00210.x
5
Views
  Published on 01 Jan 2006
 Accepted on 27 Jun 2006            Submitted on 24 Oct 2005

References

  1. Bala , G. , Caldeira , K. , Mirin , A. , Wickett , M. and Delire , C . 2005 . Multi-century changes to global climate and carbon cycle: Results from a coupled climate and carbon cycle model . J. Climate 18 , 4531 – 4544 .  

  2. Betts , R. A . 2000 . Offset of the potential carbon sink from boreal foresta-tion by decreases in surface albedo . Nature 408 , 187 – 200 .  

  3. Betts , R. A. , Cox , P. M. , Lee , S. E. Woodward , F. I . 1997 . Contrasting physiological and structural vegetation feedbacks in climate change simulations . Nature 387 , 796 – 799 .  

  4. Bonan , G. B. , Pollard , D. and Thompson , S. L . 1992 . Effects of boreal forest vegetation on global climate . Nature 359 , 716 – 718 .  

  5. Brovkin , V. , Ganapolski , A. , Claussen , M. , Kubatzlci , C. and Petoulchov , V . 1999 . Modeling response to historical land cover change . Global Eco. Biogeo . 8 , 509 – 517 .  

  6. Cox , P. M. , Betts , R. A. , Jones , C. D. , Spall , S. A. and Totterdell , I. J . 2000 . Acceleration of global warming due to carbon-cycle feedbacks in a coupled model . Nature 408 , 184 – 187 .  

  7. Foley , J. A. , Kutzbach , J. E. , Coe , M. T. and Levis , S . 1994 . Feedbacks between climate and boreal forests during the Holocene epoch . Nature 371 , 52 – 54 .  

  8. Foley , J. A. , Prentice , I. C. , Ramankutty , N. , Levis , S. , Pollard , D. and co-authors. 1996. An integrated biosphere model of land surface pro-cesses, terrestrial carbon balance and vegetation dynamics. Global Biogeochem. Cycles 10, 603 – 628.  

  9. Friedlingstein , R , Bopp , L. , Clais , P. , Dufresne , J.-L. , Fairhead , L. and co-authors . 2001. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett . 28 , 1543 – 1546 .  

  10. Gedney , N. , Cox , P.M. , Betts , R. A. , Boucher, 0. Huntingford, C. and co-authors. 2005. Detection of direct carbon dioxide effect in continental river runoff records. Nature 439, 835 – 836.  

  11. Gibbard , S. , Caldeira , K. , Bala , G. , Phillips , T. J. and Wickett , M . 2005. Climate effects of global land cover change. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL024550 .  

  12. Govindasamy , B. , Duffy , P. B. and Caldeira , K . 2001 . Land use changes and Northern Hemisphere cooling . Geophys. Res. Lett . 28 ( 2 ), 291 – 294 .  

  13. Govindasamy , B. , Thompson , S. , Caldeira , K. , Mirin , A. , Wickett , M. and Delire , C . 2005 . Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model . Tellus 57B , 153 – 163 .  

  14. Grace , J. , Berninger, E and Nagy, E. 2002. Impacts of climate change on the tree line. Ann. Botany 90, 537 – 544.  

  15. Henderson-Sellers , A. , McGuffie , K. , and Gross , C . 1995 . Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increases . J. Climate 8 , 1738 – 1756 .  

  16. Hansen , J. , Sato , Mki. , Lacis , A. and Ruedy , R . 1997 . The missing climate forcing . Phil. Trans. Royal Soc. London B 352 , 231 – 240 .  

  17. Houghton , R . 2003 . Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000 . Tellus 55B , 378 – 390 .  

  18. Intergovernmental Panel on Climate Change (IPCC) 2001 . Climate Change 2001 The Scientific Basis . Cambridge University Press , New York .  

  19. Kiehl , J. T. , Hack , J. J. , Bonan , G. B. , Boville , B. Y. , Briegleb , B. P. and co-authors 1996. Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note. NCAR/TN-420±STR, National Center for Atmospheric Research, Boulder, Colorado.  

  20. Kucharilc , C. J. , Foley , J. A. , Delire , C. , Fisher , V. A. , Coe , M. T. and co-authors. 2000. Testing the performance of a dynamic global ecosys-tem model: water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles 14 ( 3 ), 795 – 825.  

  21. Levis , S. , Foley , J. A. , and Pollard , D . 1999 . Potential high-latitude vegetation feedbacks on CO2-induced climate change . Geophys. Res. Lett . 26 ( 6 ), 747 – 750 .  

  22. Levis , S. , Foley , J. A. and Pollard , D . 2000 . Large-scale vegetation feed-backs on a doubled CO2 climate . J. Climate 13 , 1313 – 1325 .  

  23. Lloyd , J. and Taylor , J. A . 1994 . On the temperature-dependence of soil respiration . Funct. EcoL 8 , 315 – 323 .  

  24. Meehl , G. A. , Washington , W. M. , Arblaster , J. M. and Hu , A . 2004 . Fac-tors affecting climate sensitivity in global coupled models . J. Climate 17 , 1584 – 1596 .  

  25. Maltrud , M. E. , Smith , R. D. , Semtner , A. J. and Malone , A. J . 1998 . Global eddy-resolving ocean simulations driven by 1985-1995 atmo-spheric winds . J. Geophys. Res . 103 , 30 825-30 853 .  

  26. Marland G. , Boden , T. and Andre , R . 2002. Global, regional, and na-tional annual CO2 emissions from fossil-fuel burning, cement pro-duction and gas flaring: 1751-1999, CDIAC NDP-030, Carbon Diox-ide Information Analysis Center, Oak Ridge National Laboratory, Tennessee.  

  27. Mathews , H. D. , Weaver , A. J. and Meissner , K. J . 2005 . Terrestrial carbon cycle dynamics under recent and future climate change . J. Climate 18 , 1609 – 1628 .  

  28. Metz , B. , Davidson, 0., Swart, R. and Pan, J. (eds.) 2001. Climate Change 2001: Mitigation (Contribution of Working Group BI to the Third Assessment Report of the IPCC), Cambridge Univ. Press, Cambridge.  

  29. Najjar , R. G. and On , J. C . 1999. Biotic How-To, Revision 1.7, Ocean Carbon-cycle Model Intercomparison Project (OCMIP), http://www.ipsl.jussieu.fr/OCMIP/phase2/simulations/Biotic/ HOWTO-Biotic.html.  

  30. Notaro , M. , Liu , Z. , Gallimore , R. , Vavrus , S. J. , Kutzbach , J. E. and co-authors . 2005. Simulated and observed pre-industrial to model vegetation and climate changes. J. Climate 18 , 3650 – 3671 .  

  31. Owensby , C. E. , Ham , J. M. , Knapp , A. K. and Auen , L. M . 1999 . Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO2 . Global Change Biology 5 , 497 – 506 .  

  32. Polley , H. W. , Johnson , H. B. , Marino , B. D. and Mayeux , H. S . 1993 . Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations . Nature 361 , 61 – 64 .  

  33. Prentice , I. C. , Farquhar , G. D. , Fasham , M. J. R. , Goulden , M. L. , Heimann , M. and co-authors. 2001. Climate Change 2001: The Scientific Basis: Contribution of Working Group Ito the Third Assessment Report of the IPCC (eds.J. T. Houghton et al.). Cambridge University Press, UK, pp. 183 – 237.  

  34. Ramankutty , N. , Foley , J. A. , Norman , J. and McSweeney , K . 2002 . The global distribution of cultivable lands: current patterns and sensitivity to possible climate change . Global Ecol. Biogeogr 11 , 377 – 392 .  

  35. Sellers , P. J. , Bounoua , L. , Collatz , G. J. and co-authors. 1996. Com-parison of radiative and physiological effects of doubled atmospheric CO2 on climate (eds P. J. Sellen et al). Science 271 , 1402 – 1406. Thompson, S., Govindasamy, B., Mirin, A., Caldeira, K., Delire and co-authors. 2004. Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys. Res. Lett. 31 ( 23 ), L23211.  

  36. Zeng , N. , Qian , H. , Munoz , E. and Iacono , R . 2004. How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett. 31, https://doi.org/10.1029/2004GL020904 .  

comments powered by Disqus