Start Submission Become a Reviewer

Reading: Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variation...

Download

A- A+
Alt. Display

Original Research Papers

Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition

Authors:

J. Keith Moore ,

University of California, Irvine, Department of Earth System Science, Irvine, CA 92697-3100, US
X close

Scott C. Doney,

Woods Hole Oceanograhic Institution, Department of Marine Chemistry and Geochemistry, MS #25, Woods Hole, MA 02543-1543, US
X close

Keith Lindsay,

National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, US
X close

Natalie Mahowald,

National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, US
X close

Anthony F. Michaels

University of Southern California, Biology Department, Los Angeles, CA, 90089-0371, US
X close

Abstract

A global ocean biogeochemical model is used to quantify the sensitivity of marine biogeochemistry and air–sea CO2 exchange to variations in dust deposition over decadal timescales. Estimates of dust deposition generated under four climate states provide a large range in total deposition with spatially realistic patterns; transient ocean model experiments are conducted by applying a step-function change in deposition from a current climate control. Relative to current conditions, higher dust deposition increases diatom and export production, nitrogen fixation and oceanic net CO2 uptake from the atmosphere, while reduced dust deposition has the opposite effects. Over timescales less than a decade, dust modulation of marine productivity and export is dominated by direct effects in high-nutrient, low-chlorophyll regions, where iron is the primary limiting nutrient. On longer timescales, an indirect nitrogen fixation pathway has increased importance, significantly amplifying the ocean biogeochemical response. Because dust iron input decouples carbon cycling from subsurface macronutrient supply, the ratio of the change in net ocean CO2 uptake to change in export flux is large, 0.45–0.6. Decreasing dust deposition and reduced oceanic CO2 uptake over the next century could provide a positive feedback to global warming, distinct from feedbacks associated with changes in stratification and circulation.

How to Cite: Moore, J.K., Doney, S.C., Lindsay, K., Mahowald, N. and Michaels, A.F., 2006. Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition. Tellus B: Chemical and Physical Meteorology, 58(5), pp.560–572. DOI: http://doi.org/10.1111/j.1600-0889.2006.00209.x
1
Views
  Published on 01 Jan 2006
 Accepted on 26 Jun 2006            Submitted on 30 Nov 2005

References

  1. Armstrong , R. A. , Lee, C. Hedges , J. I. , Honjo , S. and Wakeham, S. G. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. Part 11 49 , 219 – 236.  

  2. Aumont , O. , Maier-Reimer , E. , Blain , S . and Monfray , P. 2003. An ecosystem model ofthe global ocean including Fe, Si, P co-limitations. Global Biogeochem. Cycles 17, 1060 , https://doi.org/10.1029/2001GB001745 . Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. and Falkowski, P. G. 2001. Iron availability, cellular iron quotas, and ni-trogen fixation in Trichodesmium.Limnol. Oceanogr 46, 1249 – 1260. Bopp, L., Kolfield, K. E., Le Quere, C. 2003. Dust impact or morine b:oto and atmospheric CO2 during glacid periods. Paleoceanography. lp(2),1046 . doi: https://doi.org/10.1029/2002PA000810 .  

  3. Bopp , L. , Monfray , P. , Aumont, 0., Dufresne, J. L., Treut, H. L. and co-authors. 2001. Potential impact of climate change on marine export production. Global Biogeochem. Cycles 15, 81 – 99.  

  4. Boyd , P. W. , Watson , A. J. , Law , C. S. , Abraham , E. R. , Trull , T. and co-authors. 2000.Phytoplankton bloom upon mesoscale iron fertilization of polarsouthernocean waters. Nature 407, 695 – 702.  

  5. Boyd , P. W. and Doney , S. C . 2002. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophys. Res. Lett. 29 ( 16 ), 53-1-53-4, https://doi.org/10.1029/2001GL014130 .  

  6. Chase , Z. , Anderson , R. E , Fleisher , M. Q. and Kubik , P. W . 2003 . Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years . Deep-Sea Res. II 50 , 799 – 832 .  

  7. Coale , K. H. , Johnson , K. S. , Fitzwater , S. E. , Gordon , R. M. , Tanner , S. and co-authors. 1996. Amassive phytoplankton bloom induced by an ecosystem-scale iron fertilizationexperiment in the equatorial Pacific Ocean. Nature 383, 495 – 501.  

  8. Coale , K. H. , Johnson , K. S. , Chavez , F. P. , Buesseler , K.O. , Barber, R. T. and co-authors. 2004. Southern Ocean Iron Enrichment Experiment: carbon cycling in high- and low-Siwaters. Science 304, 408 – 414.  

  9. Collins , W. D. , Blackmon , M. , Bitz , C. M. , Bonan , G. B. , Bretherton , C. S. and co-authors . 2006. The Community Climate System Model: CCSM3. J. Climate 19, 2122 – 2143 .  

  10. Conlcright , M. E. , Levitus , S. , O'Brien , T. , Boyer , T. P. Stephens , C. and co-authors. 1998. World Ocean Database 1998 CD-ROM data set documentation, Internal Rep. 14, Natl. Oceanogr. Data Cent., Silver Spring, MD.  

  11. de Baar , H. J. W. , Boyd , P. W. , Coale , K. H. , Landry , M. R. , Tsuda , A. and co-authors. 2005. Synthesis of 8 iron fertilization experiments: from the Iron Age in the Age of Enlightenment. J. Geophys. Res . 110 , C09516, https://doi.org/10.1029/2004JC002601 .  

  12. de Baar , H. J. W. and De Jong , J. T. M . 2001 . Distributions, sources and sinks of iron in seawater. In: Biogeochemistiy of Iron in Seawa-ter (eds.D. Turner and K. A. Hunter) . IUPAC Book Series on An-alytical and Physical Chemistry of Environmental Systems 7 , 123 – 253 .  

  13. Doney , S. C. , Lindsay , K. , Fung , I. and John , J . 2006 . Natural variabil-ity in a stable 1000 year coupled climate-carbon cycle simulation . J. Climate 19 , 3033 – 3054 .  

  14. Doney , S. C. , Lindsay , K. , Caldeira , K. , Campin , J. M. , Drange , H. and others 2004. Evaluating global ocean carbon models: the impor-tance of realistic physics. Global Biogeochem. Cycles 18, GB3017, https://doi.org/10.1029/2003GB002150 .  

  15. Falkowslci , P. G . 1997 . Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean . Nature 387 , 272 – 275 .  

  16. Friedlingstein , R , Dufresne , J. L. , Cox , P. M. and Rayner , P . 2003 . How positive is thefeedback between climate change and the carbon cycle? Tellus 55B , 692 – 700 .  

  17. Fung , I. , Doney , S. C. , Lindsay , K. and John , J . 2005 . Evolution of carbon sinks in a changing climate . Proc. Nat. Acad. Sci. (USA) 102 , 11201 – 11206 , https://doi.org/10.1073/pnas.0504949102 .  

  18. Fung , I. Y. , Meyn , S. K. , Tegen , I. , Doney , S. C. , John , J. G. and co-authors. 2000. Iron supply and demand in the upper ocean. Global Biogeochem. Cycles 14, 281 – 295.  

  19. Galloway , J. N. , Dertener , F. J. Capone , P. G. , Boyer , E. W. , Howarth , R. W. and co-authors. 2004. Nitrogen Cycles: past, present and future. Biogeodemistiy 70, 153 – 226.  

  20. Gilbert , P. M. and Bronk , D. A . 1994 . Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp . Appl. Environ. MicrobioL 60 , 3996 – 4000 .  

  21. Grini , A. and Zender , C . 2004 . Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE) . Journal of Geophysical Research 109 ( D7 ), D07202 , https://doi.org/10.1029/2003JDO04233 .  

  22. Gruber , N . 2004. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. In: The Ocean Carbon Cy-cle (eds. Follows, M. and Oguz, T.) Kluwer Academic Publishers, Netherlands, pp. 97 – 148.  

  23. Hansell , D. A. and Feely , R. A . 2000 . Atmospheric intertropical con-vergence impacts surface ocean carbon and nitrogen biogeochem-istry in the western tropical Pacific . Geophysical Res. Lett . 27 , 1013 – 1016 .  

  24. Haxeltine , A. and Prentice , I. C . 1996 . BIOME3: an equilibrium terres-trial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types . Global Biogeochem. Cycles 10 ( 4 ), 693 – 709 .  

  25. Jickells , T. D. , An , Z. S. , Anderson , K. K. , Baker , A. R. , Bergametti , G. and co-authors. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate, Science 308, 67 – 71.  

  26. Karl , D. , Michaels , A. , Bergman , B. , Capone , D. , Carpenter , E. and co-authors. 2002. Dinitrogen fixation in the world's oceans. Biogeo-chemistry 57/58, 47 – 98.  

  27. Key , R. M. , Kozyr , A. , Sabine , C. L. , Lee , K. , Wanninlchof , R. and co-authors. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles 18, GB4031, https://doi.org/10.1029/2004GB002247 .  

  28. Kiehl , J. T. , Shields , C. A. , Hack , J. J. and Collins , W . 2006 . The cli-mate sensitivity of the Community Climate System Model: CCSM3 . J. Climate 17 , 2584 – 2596 .  

  29. Kohfeld , K. E. and Harrison , S. P . 2001 . DIRTMAP: the geological record of dust . Earth Sci. Rev . 54 , 81 – 114 .  

  30. Kohfeld , K. E. , Le Quere , C. , Harrison , S. P. and Anderson , R. F. 2005. Role of marine biology in glacial-interglacial CO2 cycles. Science 308, 74 – 78.  

  31. Kustka , A. , Carpenter , E. J. and Safludo-Wilhelmy , S . 2002 . Iron and marine nitrogen fixation: progress and future directions . Res. Micro-biology 153 , 255 – 262 .  

  32. Kustka , A. , Safludo-Wilhelmy , S. , Carpenter , E. J. , Capone , D. G. and Raven , J. A . 2003 . A revised estimate of the iron use efficiency of nitrogen fixation, with special reference to the marine cyanobacterium Trichodesmium SPP. (CYANOPHYTA) . J. Phycol . 39 , 12 – 25 .  

  33. Large , W. G. and Yeager , S. G . 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note NCARITN-460+STR, 111 pp.  

  34. Le Quere , C. , Aumont , O. , Bopp , L. , Bousquet , P. , Ciaes , P. and co-authors. 2003. Two decades of ocean CO2 sink and variability Tellus 55B, 647 – 656.  

  35. Le Quere , C. , Harrison , S. P. , Prentice , I. C. , Buitenhuis , E. T. , Aumont, 0. and co-authors. 2005. Ecosystem dynamics based on plankton func-tional types for global ocean biogeochemistry models, Global Change Biol. 11, 2016 – 2040.  

  36. Luo , C. , Mahowald , N. and del Corral , J . 2003. Sensitivity study of meteorological parameters on mineral aerosol mobilization, trans-port and distribution. J. Geophys. Res . 108 ( D15 ), 4447, 10.1029/ 2003JD0003483.  

  37. Mahaffey , C. , Michaels , A. F. and Capone , D. G . 2005 . The Conundrum of marine N2 fixation . Amer J. Sci . 305 , 546 – 595 .  

  38. Mahowald , N. M. and Luo , C . 2003 . A less dusty future? Geophys. Res. Lett . 30 ( 17 ), 1903 , https://doi.org/10.1029/2003GRL017880 .  

  39. Mahowald , N. , Kohfeld , K. , Hansson , M. , Ballcanski , Y. , Harrison , S. P. and co-authors. 1999. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. Journal of Geo-physical Research 104(D13), 15 895-15 916.  

  40. Mahowald , N. , Rivera , G. and Luo , C. 2004. Comment on “Relative importance of climate and land use in determining present and future global soil dust emission” (ed.I. Tegen et al.), Geophys. Res. Lett. 31 ( 24 ), L24105, https://doi.org/10.1029/2004GL021272 .  

  41. Mahowald , N. M. , Baker , A. R. , Bergametti , G. , Brooks , N. , Duce , A. and co-authors. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles 19, GB4025, https://doi.org/10.1029/2004GB002402 .  

  42. Mahowald , N. M. , Muhs , D. R. , Levis , S. , Rasch , P. J , Yoshioka , M. and co-authors. 2006. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates J. Geophys. Res . 111 , D10202, https://doi.org/10.1029/2005JD006653 .  

  43. Martin , J. H. , Knauer , G. A. , Karl , D. M. and Broenkow , W. W. 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34 , 267 – 285.  

  44. Martin , J. H. , Gordon , R. M. , Fitzwater , S. E. 1991. The case for iron . Limnol. Oceanogr 36 , 1793– 1802 .  

  45. Michaels , A. F. , Karl , D. M. and Capone , D. G . 2001 . Elemental sto-ichiometry, new production, and nitrogen fixation . Oceanography 14 ( 4 ), 68 – 77 .  

  46. Moore , J. K. , Doney , S. C. , Kleypas , J. C. , Glover , D. M. and Fung , I. Y . 2002a . An intermediate complexity marine ecosystem model for the global domain . Deep-Sea Res. II 49 , 403 – 462 .  

  47. Moore , J. K. , Doney , S. C. , Glover , D. M. and Fung , I. Y . 2002b . Iron cycling and nutrient limitation patterns in surface waters of the world ocean Deep-Sea Res . II 49 , 463 – 508 .  

  48. Moore , J. K. , Doney , S. C. and Lindsay , K . 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles 18, GB4028, https://doi.org/10.1029/2004GB002220 .  

  49. Otto-Bliesner , B. L. , Brady , E. C. , Clauzet , G. , Tomas , R. A. , Levis , S. and co-authors. 2006. Last glacial maximum and Holocene climate in CCSM3. J. Clim. 17, 2567 – 2583.  

  50. Petit , J. R. , Mounier , L. , Jouzel , J. , Korotkevich , S.Y. , Kotlyakov , V. I. and co-authors. 1990. Palaeoclimatological and chronological impli-cations of the Vostok core dust record. Nature 343, 56 – 58.  

  51. Rasch , P. J. , Collins , W. and Eaton , B. E. 2001. Understanding the Indian ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation. J. Geophys. Res . 106 ( D7 ), 7337 – 7355.  

  52. Sarmiento , J. L. , Hughes , T. M. C. , Stouffer , R. J. and Manabe , S . 1998 . Simulated response of the ocean carbon cycle to anthropogenic climate warming Nature 393 , 245 – 249 .  

  53. Sarmiento , J. L. , Slater , R. , Barber , R. , Bopp , L. , Doney , S. C. and co-authors. 2004a. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003, https://doi.org/10.1029/2003GB002134 .  

  54. Sarmiento , J. L. , Gruber , N. , Brzezinski , M. A. and Dunne , J. P . 2004b . High-latitude controls of thermocline nutrients and low latitude bio-logical productivity . Nature 427 , 56 – 60 .  

  55. Tegen , I. M. , Werner , M. , Harrison , S. P. and Kohfeld , K. E . 2004 . Relative importance of climate and land use in determining present and future global soil dust emission . Geophys. Res. Lett . 31 , L05105 , https://doi.org/10.1029/2003GL019216 .  

  56. Tsuda , A. , Takeda , S. , Saito , H. , Nishiolca , J. , Nojiri , Y. and others 2003 . A mesoscale iron enrichment in the western Subarctic Pacific induces a large centric diatom bloom . Science 300 , 958 – 961 .  

  57. Werner , M. , Tegen , I. , Harrison , S. , Kohfeld , K. , Prentice , I. C. and co-authors. 2002. Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions JGR 107 ( 24 ), 4744, https://doi.org/10.1029/2002JD002365 .  

  58. Yeager , S. G. , Large , W. G. , Hack , J. J. and Shields , C. A . 2006 . The low resolution CCSM3 . J. Climate 17 , 2543 – 2566 .  

  59. Zarate , M . 2003 . Loess of southern South America Quat . Sci. Re v . 22 , 1987 – 2006 .  

  60. Zender , C. , Bian , H. and Newman , D . 2003a . Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatol-ogy . J. Geophys. Res . 108 ( D14 ), 4416 .  

  61. Zender , C. , Newman , D. and Tones, 0. 2003b. Spatial hetero-geneity in aeolian erodibility: uniform, topographic, geomorphic and hydrologic hypotheses. J. Geophys. Res . 108 ( D14 ), 4416, https://doi.org/10.1029/2002JD002775 .  

comments powered by Disqus