Start Submission Become a Reviewer

Reading: Estimating regional carbon exchange in New England and Quebec by combining atmospheric, grou...

Download

A- A+
Alt. Display

Original Research Papers

Estimating regional carbon exchange in New England and Quebec by combining atmospheric, ground-based and satellite data

Authors:

Daniel M. Matross ,

Department of Earth and Planetary Sciences Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, US
X close

Arlyn Andrews,

Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, 80305, US
X close

Mahadevan Pathmathevan,

Department of Earth and Planetary Sciences Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, US
X close

Christoph Gerbig,

Department of Earth Sciences, University of Waterloo, Waterloo, ON, N2L 3GL, CA
X close

John C. Lin,

Department of Earth Sciences, University of Waterloo, Waterloo, ON, N2L 3GL, CA
X close

Steven C. Wofsy,

Department of Earth and Planetary Sciences Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, US
X close

Bruce C. Daube,

Department of Earth and Planetary Sciences Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, US
X close

Elaine W. Gottlieb,

Department of Earth and Planetary Sciences Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, US
X close

Victoria Y. Chow,

Department of Earth and Planetary Sciences Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, US
X close

John T. Lee,

Environmental Physics Group, University of Maine, Orono, Maine, 04469, US
X close

Conglong Zhao,

Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, 80309, US
X close

Peter S. Bakwin,

Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, 80305; Global Monitoring Division, Earth System Research Laboratory, National ceanic and Atmospheric Administration, Boulder, CO, 80305, US
X close

J. William Munger,

Department of Earth and Planetary Sciences Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, US
X close

David Y. Hollinger

United States Department of Agriculture Forest Service, Durham, NH, 03824, US
X close

Abstract

We derive regional-scale (∼104 km2) CO2 flux estimates for summer 2004 in the northeast United States and southern Quebec by assimilating extensive data into a receptor-oriented model-data fusion framework. Surface fluxes are specified using the Vegetation Photosynthesis and Respiration Model (VPRM), a simple, readily optimized biosphere model driven by satellite data, AmeriFlux eddy covariance measurements and meteorological fields. The surface flux model is coupled to a Lagrangian atmospheric adjoint model, the Stochastic Time-Inverted Lagrangian Transport Model (STILT) that links point observations to upwind sources with high spatiotemporal resolution. Analysis of CO2 concentration data from the NOAA-ESRL tall tower at Argyle, ME and from extensive aircraft surveys, shows that the STILT–VPRM framework successfully links model flux fields to regionally representative atmospheric CO2 data, providing a bridge between ‘bottom-up’ and ‘top-down’ methods for estimating regional CO2 budgets on timescales from hourly to monthly. The surface flux model, with initial calibration to eddy covariance data, produces an excellent a priori condition for inversion studies constrained by atmospheric concentration data. Exploratory optimization studies show that data from several sites in a region are needed to constrain model parameters for all major vegetation types, because the atmosphere commingles the influence of regional vegetation types, and even high-resolution meteorological analysis cannot disentangle the associated contributions. Airborne data are critical to help define uncertainty within the optimization framework, showing for example, that in summertime CO2 concentration at Argyle (107 m) is ∼0.6 ppm lower than the mean in the planetary boundary layer.

How to Cite: Matross, D.M., Andrews, A., Pathmathevan, M., Gerbig, C., Lin, J.C., Wofsy, S.C., Daube, B.C., Gottlieb, E.W., Chow, V.Y., Lee, J.T., Zhao, C., Bakwin, P.S., Munger, J.W. and Hollinger, D.Y., 2006. Estimating regional carbon exchange in New England and Quebec by combining atmospheric, ground-based and satellite data. Tellus B: Chemical and Physical Meteorology, 58(5), pp.344–358. DOI: http://doi.org/10.1111/j.1600-0889.2006.00206.x
  Published on 01 Jan 2006
 Accepted on 12 Jun 2006            Submitted on 16 Jan 2006

References

  1. Andres , R. J. , Marland , G. , Fung , I. and Matthews , E . 1996 . A 1° x 10 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990 . Glob. Biogeochemical Cycles 10 , 419 – 429 .  

  2. Bakwin , P. S. , Tans , P. R , Hurst , D. F. and Zhao , C . 1998 . Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program . Tellus 50B , 410 – 415 .  

  3. Bakwin , P. S. Tans , P. P. , Stephens , B. B. , Wofsy , S. C. , Gerbig , C. and co-authors. 2003. Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling. J. Geophys. Res . 108 , D4514, https://doi.org/10.1029/2002JD003306 .  

  4. Bakwin , P. S. , Davis , K. J. , Yi , C. , Wofsy , S. C. , Munger , J. W. and co-authors. 2004. Regional carbon dioxide fluxes from mixing ratio data. Tellus 56B, 301 – 311.  

  5. Chou , W. W. , Wofsy , S. C. , Harriss , R. C. , Lin , J. C. , Gerbig , C. and co-authors. 2002. Net fluxes of CO2 in Amazonia derived from aircraft observations. J. Geophys Res. 107(D22), 4614, 10.1029/ 2001JD001295.  

  6. Ebel , A. , Friedrich , R. and Rodhe , H. (eds.) 1997 . Transport and Chemical Transformation of Pollutants in the Troposphere , vol. 7 , Tropo-spheric Modelling and Emission Estimation. Springer Verlag , New York .  

  7. Errico , R. M . 1997 . What is an adjoint model? Bull. Am. Meteorological Soc . 78 , 2577 – 2591 .  

  8. Friedlingstein , R , Dufresne , J. L. , Cox , P. M. and Rayner , P . 2003 . How positive is the feedback between climate change and the carbon cycle? Tellus 55B , 692 – 700 .  

  9. Fung , I. Y. , Doney , S. C. , Lindsay , K. and John , J . 2005. Evolution of carbon sinks in a changing climate. Proceedings Nat. Acad. Sci. 102 , 11201 – 11206.  

  10. Gerbig , C. , Lin , J. C. , Wofsy , S. C. , Daube , B. C. , Andrews , A. E. and co-authors. 2003a. Towards constraining regional scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms, J. Geophys. Res . 108 , D4756, https://doi.org/10.1029/2002JDO03018 .  

  11. Gerbig , C. , Lin , J. C. , Wofsy , S. C. , Daube , B. C. , Andrews , A. E. and co-authors. 2003b. Towards constraining regional scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor oriented framework. J. Geophys. Res . 108 , D4757, https://doi.org/10.1029/2003J1D003770 .  

  12. Gerbig , C. , Freitas , S. R. , Lin , J. C. , Longo , M. , Matross , D. M. and co-authors. 2005. Consistent formulation of convective transport in a Lagrangian particle model. European Geosciences Union General Assembly 2005. 24-29 April, 2005. Vienna, Austria.  

  13. Gloor , M. , Fan , S. M. , Pacala , S. , Sarmiento , J. and Ramonet , M . 1999. A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale. J. Geophys. Res . 104 , 14245 – 14260.  

  14. Gloor , M. , Bakwin , P. , Hurst , D. , Lock , L. , Draxler , R. and co-authors. 2001. What is the concentration footprint of a tall tower? J. Geophys. Res . 106 , 17 831-17 840, https://doi.org/10.1029/2001JD900021 .  

  15. Grell , G. A. and Devenyi , D . 2002. A generalized approach to parame-terizing convection combining ensemble and data assimilation tech-niques. Geophys. Res. Letters 29, https://doi.org/10.1029/2002GL015311 .  

  16. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626 – 630.  

  17. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Pak , B. C. and co-authors. 2004. Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochemical Cycles 18, GB1010, https://doi.org/10.1029/2003GB002111 .  

  18. Helliker , B. R. , Berry , J. A. , Betts , A. K. , Bakwin , P. S. , Davis , K. J. and co-authors. 2004. Estimates of net CO2 flux by application of equilibrium boundary layer concepts to CO2 and water vapor measurements from a tall tower. J. Geophys. Res . 109 , D20106, https://doi.org/10.1029/2004JD004532 .  

  19. Huete , A. R. , Liu , H.O. , Batchily, K. and Leeuwen, W. V. 1997. A comparison of vegetation indices global set of TM images for EOS-MOD'S. Remote Sens. Environ. 59, 440 – 451.  

  20. Kaminski , T. and Heimann , M . 2001 . Inverse modeling of atmospheric carbon dioxide fluxes . Science 294 , 5541 .  

  21. Law , B. E. , Falge , E. , Gu , L. , Baldocchi , D. D. , Balcwin , P. and co-authors. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Ag. and Forest Met. 113, 97-120, https://doi.org/10.1016/S0168-1923(02)00104-1 .  

  22. Lin , J. C. , Gerbig , C. , Wofsy , S. C. , Andrews , A. E. , Daube , B. C. and co-authors. 2003. The Stochastic Time-Inverted Lagrangian Transport Model (STILT): quantitative analysis of surface sources from atmo-spheric concentration data using particle ensembles in a turbulent at-mosphere . J. Geophys. Res . 108 , D4493, https://doi.org/10.1029/2002JDO03161 . Lin, J. C. and Gerbig, C. 2005. Accounting for the effect of trans-port errors on tracer inversions. Geophys. Res. Lett. 32, L01802 , doi: https://doi.org/10.1029/2004GL021127 .  

  23. Lin , J. C. , Gerbig , C. , Wofsy , S. C. , Daube , B. C. , Matross , D. M. and co-authors. 2006. What have we learned from intensive atmospheric sampling field programs of CO2? Tellus 58B, this issue.  

  24. Loveland , T. R. , Reed , B. C. , Brown , J. E. ), Ohlen, D. 0., Zhu, Z. and co-authors. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Intl. Journal Remote Sensing 21, 1303 – 1330.  

  25. Marland , G. , Boden , T. A. , Brenkert , A. L. , Andres , R. J. and Olivier , J. G . 1997. CO2 from fossil fuel burning: Updates on the magnitude, distribution, and uncertainty of emission estimates. In Fifth Interna-tional Carbon Dioxide Conference, Cairns, Queensland, Australia, 4.  

  26. Mitchell , K. E. , Lohmann , D. , Houser , P. R. , Wood , E. E , Schaake, J. C. and co-authors. 2004. The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP prod-ucts and partners in a continental distributed hydrological modeling system . J. Geophys. Res . 109 , D07590, https://doi.org/10.1029/2003JDO03823 . Pathmathevan, M., Wofsy, S. C., Matross, D. M., Xiao, X., Lin, J. C. and co-authors. 2006. A satellite-based bio-sphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM) . http://people.deas.harvard.eduigwofsyNPRM submitted. zip Raupach, M. R., Rayner, P. J., Barrett, D. J., Defriess, R. S., Heimann, M. and co-authors . 2005. Model-data synthesis in ter-restrial carbon observation: method, data requirements, and data uncertainty specifications. Global Change Biology 11, 378-397, doi : https://doi.org/10.1111/j.136502486.2005.00917.x .  

  27. Rodgers , C. D. , 2000 . Inverse Methods for Atmospheric Sounding: The-ory and Practice . World Sci ., River Edge , New Jersey , 238 p .  

  28. Rolph , G. D . 1997 . NOAA NCEP Eta Data Assimilation System (EDAS) archived by NOAA Air Resources Laboratory (The EDAS Archive ). U.S. Department of Commerce , NOAA Air Resources Laboratory (ARL ).  

  29. Xiao , X. M. , Zhang , Q. Y. , Braswell , B. , Urbanslci , S. , Boles , S. and co-authors. 2004. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of the Environment 91, 256 – 270.  

comments powered by Disqus