Start Submission Become a Reviewer

Reading: Controlling factors on the interannual CO2 budget at a subarctic black spruce forest in inte...

Download

A- A+
Alt. Display

Original Research Papers

Controlling factors on the interannual CO2 budget at a subarctic black spruce forest in interior Alaska

Authors:

Masahito Ueyama ,

International Arctic Research Center, University of Alaska Fairbanks, 930 Koyukuk Dr., Fairbanks, AK 99775, US
X close

Yoshinobu Harazono,

International Arctic Research Center, University of Alaska Fairbanks, 930 Koyukuk Dr., Fairbanks, AK 99775, US
X close

Eiji Ohtaki,

Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Okayama 700-8530, JP
X close

Akira Miyata

National Institute of Agro-Environmental Sciences, 3-1-1, Kannondai, Tsukuba 305-8604, JP
X close

Abstract

The eddy covariance method was applied to measure net ecosystem CO2 exchange (NEE) at a subarctic black spruce forest in interior Alaska during 2003 and 2004. To clarify the budget of CO2, we divided photosynthesis and respiration by applying the Carbon Budget Analysis Tool, in which the potential photosynthetic rate, the light use efficiency, and the suppression factors on photosynthesis were evaluated.

The potential photosynthetic rate and the light use efficiency were related with the understory leaf area index. The determined optimal temperature of photosynthesis was higher than 15 °C, which was higher than that of other boreal forests. Drought in midsummer of 2004 suppressed both photosynthesis and respiration, but the suppression was more effective in photosynthesis, resulting in a slightly decreased NEE. Cumulative respiration and photosynthesis were 2.29 and -2.50 kg CO2 m-2 in 2003, and 2.37 and -2.44 kg CO2 m-2 in 2004, resulting in calculated annual CO2 sink budgets of -210 and -70 g CO2 m-2 in 2003 and 2004, respectively.

How to Cite: Ueyama, M., Harazono, Y., Ohtaki, E. and Miyata, A., 2006. Controlling factors on the interannual CO2 budget at a subarctic black spruce forest in interior Alaska. Tellus B: Chemical and Physical Meteorology, 58(5), pp.491–501. DOI: http://doi.org/10.1111/j.1600-0889.2006.00205.x
  Published on 01 Jan 2006
 Accepted on 19 Jun 2006            Submitted on 13 Feb 2006

References

  1. Arneth , A. , Kurbatova , J. , Kolle, 0., Shibistova, 0. B., Lloyd, J. and co-authors. 2002. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B, 514 – 530.  

  2. Baldocchi , D. D . 2003 . Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future . Global Change Biol . 9 , 479 – 492 .  

  3. Baldocchi , D. , Valentini , R. , Running , S. , Oechel , W. and Dahlman , R . 1996 . Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems . Global Change Biol . 2 , 159 – 168 .  

  4. Chapin , F. S. , BI , Matson , P. A. and Mooney , H. A. 2002. Principles of Terrestrial Ecosystem Ecology. Springer-Verlag Press, New York , 436 pp.  

  5. Chapin , E S. , BI , Sturm , M. , Serreze , M. C. , McFadden , J. P. , Key , J. R. and co-authors. 2005. Role of land-surface changes in arctic summer warming. Science 310, 657 – 660.  

  6. Chen , W. J. , Black , T. A. , Yang , P. C. , Barr , A. G. , Neumann , H. H. and co-authors. 1999. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biol. 5, 41 – 53.  

  7. Ciais , R , Reichstein , M. , Viovy , N. , Granier , A. , Ogee , J. and co-authors. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529 – 533.  

  8. Falge , E. , Baldocchi , D. , Olson , R. , Anthoni , P. , Aubinet , M. and co-authors. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. MeteoroL 107, 43 – 69.  

  9. Fan , S.-M. Goulden , M. L. , Munger , J. W. , Daube , B. C. , Bakwin , P. S. and co-authors. 1995. Environmental controls on the photosyn-thesis and respiration of a boreal lichen woodland: a growing season of whole-ecosystem exchange measurements by eddy correlation. 0e-cologia 102, 443 – 452.  

  10. Frollcing , S . 1997 . Sensitivity of spruce/moss boreal forest net ecosystem productivity to seasonal anomalies in weather . J. Geophys. Res . 102 , 29 053-29 064 .  

  11. Goulden , M. L. , Munger , J. W. , Fan , S.-M. and Daube , B . 1996 . Measure-ments of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy . Global Change Biol . 2 , 169 – 182 .  

  12. Goulden , M. L. , Daube , B. C. , Fan , S.-M. , Sutton , D. J. , Bazzaz , A. and co-authors. 1997. Physiological responses of a black spruce forest to weather. J. Geophys. Res . 102 , 28987 – 28996.  

  13. Goulden , M. L. , Wofsy , S. C. , Harden , S. E. , Trumbore , S. E. , Crill , P. M. and co-authors. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279, 214 – 217.  

  14. Harazono , Y. , Mano , M. , Yoshimoto , M. , Vourlitis , G. L. and Oechel , W. C . 1998 . CO2 budget of the wet sedge tundra ecosystem in Alaska, analyzed by continuously measured flux and a tundra CO2 bud-get model (TCBM) . Proceedings of the Sixth Sympo. on the Joint Siberian Permafrost Studies between Japan and Russia in 1997 , pp. 159 – 174 .  

  15. Harazono , Y. , Mano , M. , Miyata , A. , Zulueta , R. C. , Oechel , W. C . 2003 . Interannual carbon uptake of a wet sedge tundra ecosystems in the arctic . Tellus 55B , 215 – 231 .  

  16. Iwashita , H. , Saigusa , N. , Murayama , S. , McCaughery , H. , Black , A. and co-authors. 2005. Effect of soil water content on carbon dioxide flux at a sparse-canopy forest in the Canadian boreal ecosystem. J. Agric. MeteoroL 61, 131 – 141.  

  17. Jarvis , P. G . 1976 . The interpretation of the vegetations in leaf water potential and stomatal conductance found in canopies in the field . Philos. Trans. R. Soc. London. B . 273 , 593 – 610 .  

  18. Jarvis , P. and Linder , S . 2000 . Constraints to growth of boreal forest . Nature 405 , 904 – 905 .  

  19. Jarvis , P. G. , Massheder , J. M. , Hale , S. E. , Moncrieff , J. B. , Rayment , M. and co-authors. 1997. Seasonal variation of exchanges of a boreal black spruce forest. J. Geophys. Res . 102 , 28953 – 28966.  

  20. Kasischke , E. S. , Rupp , T. S. and Verbyla , D. L . 2006 . Fire trends in the Alaskan boreal forest . In: Alaska's Changing Boreal Forest. Oxford Press , New York , pp. 285 – 301 .  

  21. Kosugi , Y. , Kobashi , S. and Shibata , S . 1995. Modeling stomatal con-ductance on leaves of several temperate evergreen broad-leaved trees. J. Jap. Soc. Reveget. Tech. 20, 158-167 (in Japanese with English captions and abstracts).  

  22. Lafleur , P. M. , Roulet , N. T. and Admiral , S. W . 2001 . Annual cycle of CO2 exchange at a bog peatland . J. Geophys. Res . 106 , 3071 – 3081. Lindroth, A., Grelle, A. and Moren, A. S . 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol . 4 , 443 – 450 .  

  23. Mano , M. , Harazono , Y. , Miyata , A. , Zulueta , R. C. and Oechel , W. C . 2003. Net CO2 budget and seasonal variation of CO2 fluxes at a wet sedge tundra ecosystems at Barrow, Alaska during 2003 growing season. J. Agric. MeteoroL 59, 141-154 (in Japanese with English captions and abstracts).  

  24. Monsi , M. and Saelci , T . 1953 . Uber den lichtfalctor in den planzenge-sellschaften und seine bedeutung fuEr die stoffprodulction . Jap. J. BoL 14 , 22 – 52 .  

  25. Moore , C. J . 1986 . Frequency response corrections for eddy correlation systems . Boundary Layer MeteoroL 37 , 17 – 35 .  

  26. Myneni , R. B. , Dong , J. , Tucker , C. J. , Kaufmann , R. K. , Kauppi , P. E and co-authors. 2001. A large carbon sink in the woody biomass of northern forests. PANS 98 , 14784 – 14789.  

  27. Oechel , W. C. , Vourlitis , G. L. , Hastings , S. J. , Zulueta , R. C. , Hinzman , L. and co-authors. 2000. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978 – 981.  

  28. Randerson , J. T. , Field , C. B. , Fung , I. Y. and Tans , P. P. 1999. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Letter 26, 2765 – 2768.  

  29. Schimel , D. S. , House , J. I. , Hibbard , K. A. , Bousquet , P. , Ciais , P. and co-authors. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169 – 172.  

  30. Skre , O . and Oechel, W. C. 1981. Moss functioning in different taiga ecosystems in interior Alaska. Oecologia 48, 50 – 59.  

  31. Suni , T. , Berninger , F. , Vesala , T. , Marklcanen , T. , Hari , P. and co-authors. 2003. Air temperature triggers the recovery of evergreen bo-real forest photosynthesis in spring. Global Change Biol. 9, 1410 – 1426.  

  32. Ueyama , M. , Harazono , Y. , Okada , R. , Nojiri, A. Ohtalci , E. and co-authors. 2006. Micrometeorological measurements of methane flux at a boreal forest in central Alaska. Mem. Nati Inst. Polar Res., Spec. Issue 59, 156 – 167.  

  33. Vogel , J. G. , Valentine , D. W. and Ruess , R. W . 2005 . Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates . Can. J. For Res . 35 , 161 – 174 .  

  34. Webb , E. K. , Pearman , G. I. and Leuning , R . 1980 . Correction of flux measurements for density effects due to heat and water vapour transfer . Quart. J. Roy. MeteoroL Soc . 106 , 85 – 100 .  

  35. Yoshimoto , M. , Harazono , Y. and Oechel , W. C . 1997. Effects of microm-eteorology on the CO2 budget in mid-summer over the arctic tundra at Prudhoe Bay, Alaska. J. Agric. MeteoroL 53, 1-10 (in Japanese with English captions and abstracts).  

comments powered by Disqus