Start Submission Become a Reviewer

Reading: What have we learned from intensive atmospheric sampling field programmes of CO2?

Download

A- A+
Alt. Display

Original Research Papers

What have we learned from intensive atmospheric sampling field programmes of CO2?

Authors:

J. C. Lin ,

Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371, US; Department of Earth Sciences, University of Waterloo, 200 University Ave. W.,Waterloo, ON, N2L 3G1, CA
X close

C. Gerbig,

Max-Planck-Institut für Biogeochemie, Hans-Knoell-Str. 10, D-07745 Jena, DE
X close

S. C. Wofsy,

Department of Earth & Planetary Science and, Division of Engineering & Applied Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, US
X close

B. C. Daube,

Department of Earth & Planetary Science and, Division of Engineering & Applied Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, US
X close

D. M. Matross,

Department of Earth & Planetary Science and, Division of Engineering & Applied Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, US
X close

V. Y. Chow,

Department of Earth & Planetary Science and, Division of Engineering & Applied Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, US
X close

E. Gottlieb,

Department of Earth & Planetary Science and, Division of Engineering & Applied Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, US
X close

A. E. Andrews,

Climate Monitoring and Diagnostics Laboratory, National Oceanographic and Atmospheric Administration, 325 Broadway, Boulder, CO 80305-3328, US
X close

M. Pathmathevan,

Department of Earth & Planetary Science and, Division of Engineering & Applied Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, US
X close

J. W. Munger

Department of Earth & Planetary Science and, Division of Engineering & Applied Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, US
X close

Abstract

The spatial and temporal gradients in atmospheric CO2 contain signatures of carbon fluxes, and as part of inverse studies, these signatures have been combined with atmospheric models to infer carbon sources and sinks. However, such studies have yet to yield finer-scale, regional fluxes over the continent that can be linked to ecosystem processes and ground-based observations. The reasons for this gap are twofold: lack of atmospheric observations over the continent and model deficiencies in interpreting such observations.

This paper describes a series of intensive atmospheric sampling field programmes designed as pilot experiments to bridge the observational gap over the continent and to help test and develop models to interpret these observations. We summarize recent results emerging from this work, outlining the role of the intensive atmospheric programmes in collecting CO2 data in both the vertical and horizontal dimensions. These data: (1) quantitatively establish the spatial variability of CO2 and the associated errors from neglecting this variability in models; (2) directly measure regional carbon fluxes from airmass-following experiments and (3) challenge models to reduce and account for uncertainties in atmospheric transport. We conclude with a look towards the future, outlining ways in which intensive atmospheric sampling can contribute towards advancing carbon science.

How to Cite: Lin, J.C., Gerbig, C., Wofsy, S.C., Daube, B.C., Matross, D.M., Chow, V.Y., Gottlieb, E., Andrews, A.E., Pathmathevan, M. and Munger, J.W., 2006. What have we learned from intensive atmospheric sampling field programmes of CO2?. Tellus B: Chemical and Physical Meteorology, 58(5), pp.331–343. DOI: http://doi.org/10.1111/j.1600-0889.2006.00202.x
  Published on 01 Jan 2006
 Accepted on 2 Jun 2006            Submitted on 24 Nov 2005

References

  1. Bakwin , P. S. , Davis , K. J. , Yi , C. , Wofsy , S. C. , Munger , J. W. and co-authors. 2004. Regional carbon dioxide fluxes from mixing ratio data. Tellus 56B, 301 – 311.  

  2. Bakwin , P. S. , Tans , P. R , Hurst , D. F. and Zhao , C . 1998 . Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program . Tellus 50B , 401 – 415 .  

  3. Barford , C. C. , Wofsy , S. C. , Goulden , M. L. , Munger , J. W. , Pyle , E. H. and co-authors . 2001. Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest . Science 294 , 1688– 1691 .  

  4. Bousquet , P. , Ciais , P. , Peylin , P. , Ramonet , M. and Monfray , P . 1999 . Inverse modeling of annual atmospheric CO2 sources and sinks 1. method and control inversion . J. Geophys. Res . 104 ( D21 ), 26161 – 26178 .  

  5. Brown , S. L. and Schroeder , P. E . 1999 . Spatial patterns of aboveground production and mortality of woody biomass for eastern U.S . forests. EcoL AppL 9 ( 3 ), 968 – 980 .  

  6. Conway , T. J. , Tans , P. P. , Waterman , L. S. , Thoning , K. W. , Kitzis , D. R. and co-authors. 1994. Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Adminis-tration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res . 99 ( D11 ), 22831 – 22855.  

  7. Crisp , D. , Atlas , R. M. , Breon , F.-M. , Brown , L. R. , Burrows , J. P. and co-authors. 2004. The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res. 34, 700 – 709.  

  8. Dargaville , R. J. , Doney , S. C. and Fung , I. Y . 2003 . Inter-annual variabil-ity in the interhemispheric atmospheric CO2 gradient: contributions from transport and the seasonal rectifier . Tellus 55B , 711 – 722 .  

  9. Daube , B. C. , Boering , K. A. , Andrews , A. E. and Wofsy , S. C . 2002 . A high-precision fast-response airborne CO2 analyzer for in situ sam-pling from the surface to the middle stratosphere . J. Atmos. Ocean. Technol . 19 , 1532 – 1543 .  

  10. Denning , A. S. , Takahashi , T. and Friedlingstein , P . 1999 . Can a strong atmospheric CO2 rectifier effect be reconciled with a “reasonable” carbon budget? Tellus 51B , 249 – 253 .  

  11. Emanuel , K. A . 1994 . Atmospheric Convection. Oxford University Press. Enting, I. G., Trudinger, C. M. and Francey, R. J. 1995. A synthesis inversion of the concentration and delta-C-13 of atmospheric CO2 . Tellus 47B ( 1-2 ), 35 – 52 .  

  12. Errico , R. M . 1997 . What is an adjoint model? Bull. Am. Meteor Soc . 78 ( 11 ), 2577 – 2591 .  

  13. Fan , S. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. and co-authors. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442 – 446.  

  14. Gerbig , C. , Schmitgen , S. , Kley , D. , Volz-Thomas , A. , Dewey , K. and co-authors. 1999. An improved fast-response vacuum-UV res-onance fluorescence CO instrument. J. Geophys. Res . 104 ( D1 ), 1699 – 1704.  

  15. Gerbig , C. , Lin , J. C. , Wofsy , S. C. , Daube , B. C. , Andrews , A. E. and co-authors. 2003a. Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. observed spatial variability from airborne platforms. J. Geophys. Res . 108 ( D24 ), 4756, https://doi.org/10.1029/2002JD003018 .  

  16. Gerbig , C. , Lin , J. C. , Wofsy , S. C. , Daube , B. C. , Andrews , A. E. and co-authors. 2003b. Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. analysis of COBRA data using a receptor-oriented framework. J. Geophys. Res . 108 ( D24 ), 4757, https://doi.org/10.1029/2003JD003770 .  

  17. Gerbig , C. , Lin , J. C. , Munger , J. W. and Wofsy , S. C . 2006. What can tracer observations in the continental boundary layer tell us about surface-atmosphere fluxes? Atmos. Chem. Phys. 6 , 539 – 554. GLOBALVIEW-0O2, 2005. GLOBALVIEW-0O2: Cooperative atmo-spheric data integration project—carbon dioxide. National Oceanic and Atmospheric Administration/Climate Monitorning and Diagnostics Laboratory, Boulder, Colorado.  

  18. Gloor , M. , Fan , S.-M. , Pacala , S. , Sarmiento , J. and Ramonet , M . 1999. A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale. J. Geophys. Res . 104 ( D12 ), 14 245-14 260.  

  19. Goulden , M. L. , Munger , J. W. , Fan , S.-M. , Daube , B. C. and Wofsy , S. C . 1996 . Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability . Science 271 , 1576 – 1578 .  

  20. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626 – 630.  

  21. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2003. TransCom 3 CO2 inversion intercomparison: 1 annual mean control results and sensitivity to transport and prior flux information. Tellus 55B, 555 – 579.  

  22. Helliker , B. R. , Berry , J. A. , Betts , A. K. , Bakwin , P. S. , Davis , K. J. and co-authors. 2004. Estimates of net CO2 flux by application of equilibrium boundary layer concepts to CO2 and water vapor measurements from a tall tower. J. Geophys. Res . 109 ( D20106 ), https://doi.org/10.1029/2004JD004532 .  

  23. Hollinger , D. Y. , Goltz , S. M. , Davidson , E. A. , Lee , J. T. , Tu , K. and co-authors. 1999. Seasonal patterns and environmental control of carbon dioxide and water vapor exchange in an ecotonal boreal forest. Global Change Biol. 5, 891 – 902.  

  24. Hurst , D. , Lin , J. C. , Romashlcin , P. A. , Daube , B. C. , Gerbig , C. and co-authors. 2006. Continuing emissions of restricted halocarbons in the USA and Canada: Are they still globally significant? J. Geophys. Res . 111 ( D15302 ), https://doi.org/10.1029/2005JDO06785 .  

  25. Kaminski , T. , Rayner , P. J. , Heimann , M. and Enting , I. G . 2001 . On aggregation errors in atmospheric transport inversions . J. Geophys. Res . 106 ( D5 ), 4703 – 4715 .  

  26. Keeling , C. D. , Bacastow , R. B. , Bain-Bridge , A. E. , Ekdahl , C. A. , Jr. , Guenther , P. R. and co-authors. 1976. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28 , 538 – 551. Kitanidis, P. K. 1997. Introduction to Geostatistics: Applications in Hy-drogeology. Cambridge University Press , Cambridge , UK, 271 pp. Law, R. M., Rayner, P. J., Denning, A. S., Erickson, D., Fung, I. Y. and co-authors. 1996. Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Global Biogeochem. Cycles 10(4), 783 – 796.  

  27. Lin , J. C. and Gerbig , C . 2005 . Accounting for the effect of trans-port errors on tracer inversions . Geophys. Res. Lett . 32 ( L01802 ), https://doi.org/10.1029/2004GL021127 .  

  28. Lin , J. C. , Gerbig , C. , Wofsy , S. C. , Andrews , A. E. , Daube , B. C. and co-authors. 2003. A near-field tool for simulating the upstream influ-ence of atmospheric observations: the Stochastic Time-Inverted La-grangian Transport (STILT) model. J. Geophys. Res . 108 ( D16 ), 4493, https://doi.org/10.1029/2002JD003161 .  

  29. Lin , J. C. , Gerbig , C. , Wofsy , S. C. , Andrews , A. E. , Vay , S. A. and co-authors . 2004a . An empirical analysis of the spatial variability of atmo-spheric CO2: implications for inverse analyses and space-borne sen-sors. Geophys. Res. Lett. 31(L23104), https://doi.org/10.1029/2004GL020957 . Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C. and co-authors. 2004b. Measuring fluxes of trace gases at regional scales by Lagrangian observations: application to the CO2 Budget and Rec-tification Airborne (COBRA) study. J. Geophys. Res . 109 ( D15304 ), doi: https://doi.org/10.1029/2004JD004754 .  

  30. Masarie , K. A. and Tans , P. P . 1995. Extension and integration of atmo-spheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res . 100 , 11593 – 11610.  

  31. Matross , D. M. , Andrews , A. E. , Pathmathevan , M. , Gerbig , C. , Lin , J. C. and co-authors. 2007. Estimating regional carbon exchange in New England and Quebec by combining atmospheric, ground-based, and satellite data. Tellus-B, this issue.  

  32. Peters , W. , Krol , M. C. , Dlugokencky , E. J. , Dentener , F. J. , Bergamaschi , P. and co-authors. 2004. Toward regional-scale modeling using the two-way nested global model TM5: characterization of transport using SF6 . J. Geophys. Res . 109 ( D19314 ), https://doi.org/10.1029/2004JD005020 . Romashlcin, P. A., Hurst, D. F., Elkins, J. W., Dutton, G. S., Fahey, D. W. and co-authors. 2001. In situ measurements of long-lived trace gases in the lower stratosphere by gas chromatography. J. Atmos. Ocean. Technol. 18 , 1195 – 1204.  

  33. Schimel , D. , Melillo , J. , Tian , H. , McGuire , A. D. , Kicklighter , D . and co-authors. 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States . Science 287 , 2004– 2006 .  

  34. Stephens , B. B. , Wofsy , S. C. , Keeling , R. E. ), Tans, P. P., and Potosnak, M. J. 2000. The CO2 budget and rectification airborne study: strategies for measuring rectifiers and regional fluxes. In: Inverse Methods in Global Biogeochemical Cycles (eds. Kasibhatla P., et al.). American Geophysical Union, Washington, DC, pp. 311 – 324.  

  35. Stull , R. B . 1988 . An Introduction to Boundary Layer Meteorology . Kluwer , Dordrecht , The Netherlands , 666 pp .  

  36. Tans , P. P. , Bakwin , P. S. and Guenther, D. W. 1996. A feasible Global Cycle Observing System: a plan to decipher today's carbon cycle based on observations. Global Change Biol. 2, 309 – 318.  

  37. Tans , P. P. , Fung , I. Y. and Takahashi , T . 1990. Observational constraints on the global atmospheric CO2 budget. Science 247 , 1431 – 1438. Thompson, A. M., Pickering, K. E., Dickerson, R. R., Ellis, W. G., Jr., Jacob, D. J. and co-authors. 1994. Convective-transport over the cen-tral United States and its role in regional CO and ozone budgets. J. Geophys. Res . 99 ( D9 ), 18 703-18 711.  

  38. Washenfelder , R. A. , Sherlock , V , Connor , B. J. , Toon , G. C. and Wennberg , P . 0. 2005. Initial results from the total carbon column observing network. 7th International Carbon Dioxide Conference, Broomfield, CO.  

  39. Wofsy , S. C. and Harriss , R. C . 2002 . The North American Carbon Program (NACP), NACP Committee of the U . S. Interagency Car-bon Cycle Science Program, U.S. Global Change Research Program, Washington , DC .  

  40. Wofsy , S. C. , Goulden , M. L. , Munger , J. W. , Fan , S.-M. , Bakwin , P. S. and co-authors. 1993. Net exchange of CO2 in a mid-latitude forest. Science 260, 1314 – 1317.  

  41. Worthy , D. E. J. , Higuchi , K. and Chan , D . 2003 . North American in-fluence on atmospheric carbon dioxide data collected at Sable Island, Canada . Tellus 55B , 105 – 114 .  

comments powered by Disqus