Start Submission Become a Reviewer

Reading: Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks

Download

A- A+
Alt. Display

Original Research Papers

Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks

Author:

H. Damon Matthews

Department of Geography, University of Calgary, 2500 University Drive N.W., Calgary, T2N 1N4, CA
About H. Damon

damon@ocean.seos.uvic.ca

X close

Abstract

Carbon cycle feedbacks will have a direct effect on anthropogenic emissions required to stabilize CO2 in the atmosphere. In this study, I used an intermediate complexity coupled climate-carbon model to quantify allowable CO2 emissions for a series of scenarios leading to CO2 stabilization at levels between 350 and 1000 ppmv. For all scenarios, global temperature did not stabilize over the next several centuries, but rather continued to increase well beyond the point of CO2 stabilization. Furthermore, neither long-term climate change, nor total allowable CO2 emissions, were sensitive to the shape of the CO2 stabilization profile, but only to the final stabilization level. For the 550-stabilization scenario, positive carbon cycle-climate feedbacks required a reduction of annual CO2 emissions throughout the simulation, with a maximum reduction of 2.3 GtC/yr occurring at 2050. Total emissions over the 21st century were 20% lower than those derived from an equivalent simulation without feedbacks. In two additional runs with varied climate sensitivities, emissions consistent with 550-stabilization were reduced by between 190 and 540 GtC over the next 400 yr relative to the no-feedbacks run. Allowable emissions were further reduced in all cases if CO2 increases did not affect future vegetation productivity, as this removed an otherwise important negative feedback on atmospheric CO2.

How to Cite: Matthews, H.D., 2006. Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks. Tellus B: Chemical and Physical Meteorology, 58(5), pp.591–602. DOI: http://doi.org/10.1111/j.1600-0889.2006.00200.x
1
Views
  Published on 01 Jan 2006
 Accepted on 12 Jun 2006            Submitted on 18 Nov 2005

References

  1. Adams , B. , White , A. and Lenton , T. M . 2004 . An analysis of some diverse approaches to modelling terrestrial net primary productivity . Ecol. Model . 177 , 353 – 391 .  

  2. Adams , J. M. and Piovesan , G . 2002 . Uncertainties in the role of land vegetation in the carbon cycle . Chemosphere 49 , 805 – 819 .  

  3. Archer , D. , Martin , P. , Buffett , B. , Brovkin , V. , Rahmstorf , S. and co-authors. 2004. The importance of ocean temperature to global biogeo-chemistry. Earth Planet. Sc. Lett. 222, 333 – 348.  

  4. Caspersen , J. P. , Pacala , S. W. , Jenkins , J. C. , Hurtt , G. C. , Moorcroft , P. R. and co-authors . 2000. Contributions of land-use history to carbon accumulation in US forests. Science 290 , 1148 – 1151 .  

  5. Cox , P. M . 2001. Description of the TRIFFID' Dynamic Global Vege-tation Model, Hadley Center Technical Note 24, Met Office, UK.  

  6. Cox , P. M. , Betts , R. A. , Bunton , C. B. , Essery , R. L. H. , Rowntree , P. R. and co-authors. 1999. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dynam. 15, 183 – 203.  

  7. Cox , P. M. , Betts , R. A. , Jones , C. D. , Spa11, S. A. and Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184 – 187.  

  8. DeLucia , E. H. , Moore , D. J. and Norby , R. J . 2005 . Contrasting re-sponses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle. Global Biogeochem. Cy. 19, GB 3006. Dufresne, J.-L., Friedlingstein, P., Berthelot, M., Bopp, L., Ciais, P. and co-authors . 2002. On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett . 29 , 1405 .  

  9. Enting , I. G. , Wigley , T. M. L. and Heimann , M . 1994 Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land analysis, CSIRO Division of Atmospheric Research Technical Paper No. 31.  

  10. Essery , R. L. H. , Best , M. J. , Betts , R. A. , Cox , P. M. and Taylor , C. M . 2003 . Explicit representation of subgrid heterogeneity in a GCM land surface scheme . J. Hydrometeorol . 4 , 530 – 543 .  

  11. Ewen , T. L. , Weaver , A. J. and Eby , M . 2004 . Sensitivity of the inorganic ocean carbon cycle to future climate warming in the UVic coupled model . Atmos. Ocean 42 , 23 – 42 .  

  12. Forest , C. E. , Stone , P. H. and Sokolov , A. P . 2006 . Estimated PDFs of cli-mate system properties including natural and anthropogenic forcings . Geophys. Res. Lett . 33 , L01 , 705 .  

  13. Frame , D. J. , Booth , B. B. B. , Kettleborough , J. A. , Stainforth , D. A. , Gregory , J. M. and co-authors. 2005. Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett. 32, L09,702. Friedlingstein, R, Bopp, L., Ciais, R, Dufresne, J.-L., Fairhead, L. and co-authors. 2001. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543 – 1546.  

  14. Friedlingstein , R , Dufresne , J.-L. , Cox , P. M. and Rayner , P . 2003 . How positive is the feedback between future climate change and the carbon cycle? , Tellus . 55B , 692 – 700 .  

  15. Friedlingstein , P. , Cox , P. , Betts , R. , von Bloh , W. , Brovlcin , V. and co-authors. 2006. Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. J. Clim., 19, 3337 – 3353.  

  16. Fung , I. Y. , Doney , S. C. , Lindsay , K. and John , J . 2005. Evolution of carbon sinks in a changing climate. P. Natl. Acad. Sci. USA. 102, 11, 201-11,206.  

  17. Govindasamy , B. , Thompson , S. , Mirin , A. , Wickett , M. , Caldeira , K. and co-authors. 2005. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model. Tellus 57B, 153 – 163.  

  18. Hegerl , G. C. , Crowley , T. J. , Hyde , W. T. and Frame , D. J . 2006 . Con-straints on climate sensitivity from temperature reconstructions of the last millenium . Nature 440 , 1029 – 1032 .  

  19. Houghton , J. T. , Meira Filho , L. G. , Callander , B. A. , Harris , N. , Katten-berg , A. and co-authors. (Eds.). 1995. Climate Change 1994: Radia-tive Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, 339 pp., Camb. Univ. Press, UK.  

  20. Houghton , J. T. , Ding , Y. , Griggs , D. J. , Noguer , M. , P. J. van der Linden and co-authors (Eds.). 2001. Climate Change 2001: The Scientific Basis, 944 pp., Camb. Univ. Press, UK.  

  21. Hungate , B. A. , Dukes , J. S. , Shaw , M. R. , Luo , Y. and Field , C. B . 2003 . Nitrogen and climate change . Science 302 , 1512 – 1513 .  

  22. Jones , C. , McConnell , C. , Coleman , K. , Cox , P. , Falloon , P. and co-authors. 2005. Global climate change and soil carbon stocks; predic-tions from two contrasting models for the turnover of organic carbon in soil. Glob. Change Biol. 11, 154 – 166.  

  23. Jones , C. D. , Cox , P. M. , Essery , R. L. H. , Roberts , D. L. and Woodage , M. J . 2003 . Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols . Geophys. Res. Lett . 30 , 1479 .  

  24. Jones , C. D. , Cox , P. M. and Huntingford , C . 2006a. Impact of climate-carbon cycle feedbacks on emissions scenarios to achieve stabilisation. in Avoiding Dangerous Climate Change (eds H. J. Schellnhuber, W. Cramer, N. Nakicenovic, T. Wigley and G. Tohe) pp. 323-331, Camb. Univ. Press, UK.  

  25. Jones , C. D. , Cox , P.M. and Huntingford , C . 2006b . Climate-carbon cy-cle feedbacks under stabilisation: uncertainty and observational con-straints . Tellus , this issue .  

  26. Joos , F. , Plattner , G.-K. , Stocker , T. F. , Marchal, 0. and Schmittner, A. 1999. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284, 464 – 467.  

  27. Joos , F. , Prentice , I. C. , Sitch , S. , Meyer , R. , Hooss , G. and co-authors. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emissions scenarios. Global Biogeochem. Cy. 15, 891 – 907.  

  28. Joos , F. , Prentice , I. C. and House , J. I . 2002 . Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with us forest inventory data . Glob. Change Biol . 8 , 299 – 303 .  

  29. Karnosky , D. E 2003 . Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps . Environ. Int . 29 , 161 – 169 .  

  30. Kheshgi , H. S. and Jain , A. K . 2003 . Projecting future climate change: implications of carbon cycle model intercomparisons . Glob. Change Biol . 17 , 1047 .  

  31. Knutti , R. , Joos , F. , Muller , S. A. , Plattner , G.-K. and Stocker , T. F . 2005 . Probabilistic climate change projections for CO2 stabilization profiles . Geophys. Res. Lett . 32 , L20 , 707 .  

  32. Lamarque , J.-F. , Kiehl , J. T. , Brasseur , G. P. , Butler , T. , Cameron-Smith , P. and co-authors. 2005. Assessing future nitrogen deposition and car-bon cycle feedback using a multimodel approach: analysis of nitrogen deposition. J. Geophys. Res . 110 , D19,303.  

  33. Marland , G. , Boden , T. A. and Andres , R. J . 2002. Global, regional, and national annual CO2 emissions from fossil-fuel burning, ce-ment production, and gas flaring : 1751 - 2000 . in CDIAC NDP-030, p . http://cdiac.esd.ornIgov/trends/trends.htm , Carbon Dioxide Infor-mation Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN .  

  34. Matthews , H. D . 2005 . Decrease of emissions required to stabilize atmo-spheric CO2 due to positive carbon cycle-climate feedbacks . Geophys. Res. Lett . 32 , L21 , 707 .  

  35. Matthews , H. D. , Eby , M. , Weaver , A. J. and Hawkins , B. J . 2005a . Primary productivity control of simulated carbon cycle-climate feed-backs . Geophys. Res. Lett . 32 , L14 , 708 .  

  36. Matthews , H. D. , Weaver , A. J. and Meissner , K. J . 2005b . Terrestrial carbon cycle dynamics under recent and future climate change . J. Clim . 18 , 1609 – 1628 .  

  37. Meissner , K. J. , Weaver , A. J. , Matthews , H. D. and Cox , P. M. 2003. The role of land-surface dynamics in glacial inception: a study with the UVic Earth System Climate Model. Clim. Dynam. 21, 515 – 537.  

  38. Norby , R. J. , DeLucia , E. H. , Gielen , B. , Calfapietna , C. , Grardina , C. P. and co-authors. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. P. Natl. Acad. Sci. USA. 102, 18052, 18056.  

  39. Nowak , R. S. , Ellsworth , D. S. , Smith , S. D . 2004 . Functional responses of plants to elevated atmospheric CO2 - do photosynthetic and pro-ductivity data from FACE experiments support early predictions? New phytol ., 162 , 253 , 280 .  

  40. O'Neill , B. C. and Oppenheimer , M . 2004. Climate change impacts are sensitive to the concentration stabilization path. P. Natl. Acad. Sci. USA. 101, 16,411 – 16,414.  

  41. Oren , R. , Ellsmorth , D. S. , Johnsen , K. , Phillips , N. , Ewers , B. E. and co-authors. 2001. Soil fertility limits carbon sequestration by for-est ecosystems in a CO2-enriched atmosphere. Nature 411, 469 – 472.  

  42. On , J., Najjar, C. R., Sabine, C. L. and Joos, F. 1999 Abiotic-HOWTO,. Internal OCMIP Report, 25 pp., LCSE/CEA Saclay, Gif-sur-Yvette, France.  

  43. Prentice , C. , Farquhar , G. D. , Fasham , M. J. R. , Goulden , M. L. , Heimann , M. and co-authors. 2001. The carbon cycle and atmo-spheric carbon dioxide. in Climate Change 2001: The Scientific Ba-sis, edited by J. Houghton et al., pp. 183-237, Camb. Univ. Press, UK.  

  44. Sabine , C. L. , Feely , R. A. , Gruber , N. , Key , R. M. , Lee , K. , and co-authors. 2004. The oceanic sink for anthropogenic CO2. Science 305, 367 – 371.  

  45. Sarmiento , J. L. , Slater , R. , Barber , R. , Bopp , L. , Doney , S. C and co-authors. 2004. Response of ocean ecosystems to climate warming. Glob. Change Biol. 18, GB3003.  

  46. Schimel , D. , Grubb , M. , Joos , F. , Kaufmann , R. , Moss , R. and co-authors. 1997. Stabilization of Atmospheric Greenhouse Gases: Physical, Bi-ological and Socio-economic Implications — IPCC Technical Paper III, 52 pp., Intergovernmental Panel on Climate Change, Geneva, Switzerland.  

  47. Schimel , D. S. , House , J. I. , Hibbard , K. A. , Bousquet , P. , Clais, P. and co-authors. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169 – 172.  

  48. Sitch , S. , Brovkin , V , von Bloh , W. , van Vuuren, D., Eickhout, B. and Ganopolski, A. 2005. Impacts of future land cover changes on atmo-spheric CO2 and climate. Global Biogeochem. Cy. 19, GB2013. Stainforth, D. A., Alna, T., Christensen, C., Collins M., Faull, N. and co-authors. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403 – 406.  

  49. Stocker , T. F. and Schmittner , A . 1997 . Influence of CO2 emission rates on the stability of the thermohaline circulation . Nature 1388 , 862 – 865 .  

  50. Thompson , S. L. , Govindasamy , B. , Mirin , A. , Caldeira , K. , Delire , C. and co-authors. 2004. Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys. Res. Lett. 31, L23, 211.  

  51. United Nations . 1992 Earth Summit Convention on Climate Change„ United Nations Conference on Environment and Development, Rio de Janeiro, Brazil.  

  52. Vetter , M. , Wirth , C. , Böttcher, H., Churkina, G., Schulze, E.-D., Wut-zler, T. and co-authors. 2005. Partitioning direct and indirect human-induced effects on carbon sequestration of managed coniferous forests using model simulations and forest inventories. Glob. Change Biol. 11, 1 – 18.  

  53. Weaver , A . J., Eloy, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B. and co-authors. 2001. The UVic Earth System Climate Model: Model descrip-tion, climatology and applications to past, present and future climates. Atmos. Ocean 39, 361 – 428.  

  54. Wigley , T. M. L. , Richels , R. and Edmonds , J. A . 1996 . Economic and environmental choices in the stabilization of atmospheric CO2 con-centrations . Nature 379 , 240 – 243 .  

  55. Zeng , N. , Qian , H. and Munoz , E . 2004 . How strong is carbon cycle-climate feedback under global warming? , Geophys. Res. Lett . 31 , L20 , 203 .  

comments powered by Disqus