Start Submission Become a Reviewer

Reading: A dynamic-flow carbon-cycle box model and high-latitude sensitivity

Download

A- A+
Alt. Display

Original Research Papers

A dynamic-flow carbon-cycle box model and high-latitude sensitivity

Authors:

Emily Lane ,

Institute of Geophysics and Planetary Physics, University of California Los Angeles, US
X close

Synte Peacock,

Department of the Geophysical Sciences, University of Chicago, US
X close

Juan M. Restrepo

Department of Atmospheric Sciences and Physics Department, University of Arizona, US
X close

Abstract

Most of the hypotheses put forward to explain glacial–interglacial cycles in atmospheric pCO2 are centred on Southern-Ocean-based mechanisms. This is in large part because: (1) timing constraints rule out changes in the North Atlantic as the trigger; (2) the concept of “high-latitude sensitivity” eliminates changes in the non-polar oceans as likely contenders. Many of the Southern-Ocean-based mechanisms for changing atmospheric pCO2 on glacial–interglacial time-scales are based on results from highly simplified box models with prescribed flow fields and fixed particulate flux. It has been argued that box models are significantly more “high-latitude sensitive” than General Circulation Models. In light of this, it is important to understand whether this high-latitude sensitivity is a feature common to all box models, and whether the apparent degree of sensitivity changes for different tracers and parameters. We introduce a new metric for assessing how “high-latitude sensitive” a particular solution is to perturbations. With this metric, we demonstrate that a given model may be high-latitude sensitive to certain parameters but not to others. We find that the incorporation of a dynamic-based flow field and a Michaelis–Menten type nutrient feedback can have a significant impact on the apparent sensitivity of the model to perturbations. The implications of this for current box-model-based estimates of atmospheric pCO2 drawdown are discussed.

How to Cite: Lane, E., Peacock, S. and Restrepo, J.M., 2006. A dynamic-flow carbon-cycle box model and high-latitude sensitivity. Tellus B: Chemical and Physical Meteorology, 58(4), pp.257–278. DOI: http://doi.org/10.1111/j.1600-0889.2006.00192.x
1
Views
  Published on 01 Jan 2006
 Accepted on 19 Apr 2006            Submitted on 20 Jun 2005

References

  1. Adkins , J. F. , McIntyre , K. and Schrag , D. P . 2002 . The salinity, temper-ature, and 3180 of the glacial deep ocean . Science 298 , 1769 – 1773 .  

  2. Anderson , L. and Sarmiento , J . 1994 . Redfield ratios of remineralization determined by data analysis . Global Biogeochemical Cycles 8 , 65 – 80 .  

  3. Archer , D. , Martin , P. , Brovkin , V. , Plattner , G.-K. and Ashen-del , C . 2003 . Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2 . Paleoceanography 18 ( 1 ), 1012 .  

  4. Archer , D. E. and Winguth , A . 2000 . What caused the glacial/interglacial atmospheric pCO2 cycles? Reviews of Geophysics 38 ( 2 ), 159 – 189 .  

  5. Bacastow , R. B . 1996 . The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2 . Global Biogeo-chemical Cycles 10 ( 2 ), 319 – 334 .  

  6. Beck , J. W. , Edwards , R. L. , Ito , E. , Taylor , E W. , Recy , J. , Rougerie , E , Joannot , P. and Henin , C . 1992 . Sea-surface temperature from coral skeletal strontium calcium ratios . Science 257 ( 5070 ), 644 – 647 .  

  7. Broecker , W. and Peng , T.-H . 1982 . Tracers in the Sea . Palisades , N.Y.: Lamont-Doherty Geological Observatory , Columbia University .  

  8. Broecker , W. , Lynch-Stieglitz , J. , Archer , D. , Hoffman , M. , Maier-Reimer , E. , Marchal, 0., Stocker, T. and Gruber, N. 1999. How strong is the Harvardton-Bear constraint? Global Biogeochemical Cycles 13 ( 4 ), 817 – 820.  

  9. Cao , Y. , Petzold , L. and Serban , R . 2003 . Adjoint sensitivity analysis for differential-algebraic equations: the adjoint DAE system and its numerical solution . SIAM J. Sci. Computing 24 , 171 – 192 .  

  10. Cessi , P. and Young , W . 1992 . Multiple equilibria in two-dimensional thermohaline circulation . J. Fluid Mech . 241 , 291 – 309 .  

  11. Dugdale , R. C . 1967 . Nutrient limitation in the sea: dynamics, identifi-cation and significance . Limnology and Oceanography 12 , 685 – 695 .  

  12. Falkowski , P. , Barber , R. and Smetacek , V . 1988 . Biogeochemical con-trols and feedbacks on ocean primary production . Science 281 , 200 – 206 .  

  13. Francois , R. , Altabet , M. , Yu , E. , Sigman , D. , Bacon , M. , Frank , M. , Bohrman , G. , Bareille , G. and Labeyrie , L . 1997 . Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period . Nature 389 , 929 – 935 .  

  14. Garabato , A. , Oliver , K. , Watson , A. and Messias , M . 2004 . Turbulent diapycnal mixing in the Nordic Seas . Journal of Geophysical Research 109 , C12010 .  

  15. Gildor , H. and Tziperman , E . 2001 . Physical mechanisms behind biogeo-chemical glacial-interglacial CO2 variations . Geophysical Research Letters 27 , 3077 – 3080 .  

  16. Griffies , S. and Tziperman , E . 1995 . A linear thermohaline oscillator driven by stochastic atmospheric forcing . Journal of Climate 8 ( 10 ), 2440 – 2453 .  

  17. Guilderson , T. P. , Fairbanks , R. G. and Rubenstone , J. L . 1994 . Tropi-cal temperature variations since 20 000 years ago: Modulating inter-hemispheric climate change . Science 263 , 663 – 665 .  

  18. Knox, E and McElroy, M . 1984 . Changes in atmospheric CO2: Influence of marine biota at high latitude . Journal of Geophysical Research 89 ( D3 ), 4629 – 4637 .  

  19. Marotzke , J. and Willebrand , J . 1991 . Equilibria of the global thermoha-line circulation . Journal of Physical Oceanography 21 , 1372 – 1385 .  

  20. Milliman , J. and Droxler , A . 1996 . Neritic and pelagic carbonate sed-imentation in the marine environment: Ignorance is no bliss . Geol. Rundsch . 85 , 496 – 504 .  

  21. Milliman , J. and Troy , P . 1999 . Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Res. I 46 , 1653 – 1670 .  

  22. Nilsson , J. , Brostrom , G. and Walin , G . 2003 . The thermohaline cir-culation and vertical mixing: does weaker density stratification give stronger overturning? Journal of Physical Oceanography 33 , 2781 – 2795 .  

  23. Peacock , S. , Lane , E. and Restrepo , J. M . 2006. A possible sequence of events for the generalized glacial-interglacial cycle. Global Bio-geochem. Cycles, 20, GB2010, https://doi.org/10.1029/2005GB002448 .  

  24. Polzin , K. L. , Toole , J. M. , Ledwell , J. R. and Schmitt , R. W . 1997 . Spatial variability of turbulent mixing in the abyssal ocean . Science 276 , 93 – 96 .  

  25. Restrepo , J. M. , Leaf , G. K. and Griewank , A . 1998 . Circumventing storage limitations in variational data assimilation . SIAM Journal on Scientific Computing 19 , 1586 – 1605 .  

  26. Sarmiento , J. L. and Gruber , N. 2006. Ocean Biogeochemical Dynamics . Princeton University Press.  

  27. Sarmiento , J. L. and Toggweiler , J. R. 1984. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 621 – 624.  

  28. Sarmiento , J. L. , Dunne , J. , Gnanadesikan , A. , Matsumoto , K. and Slater , R. R. 2002. A new estimate of the CaCO3 to or-ganic carbon export ratio. Global Biogeochemical Cycles 16(4), https://doi.org/10.1029/2002GB001919 .  

  29. Schmitz , W . 1995 . On the interbasin-scale thermohaline circulation . Re-views of Geophysics 33 , 151 – 173 .  

  30. Shaffer , G. and Olsen , S . 2001 . Sensitivity of the thermohaline circulation and climate to ocean exchanges in a simple coupled model . Climate Dynamics 17 ( 5-6 ), 433 – 444 .  

  31. Siegenthaler , U. and Wenk , T . 1984 . Rapid atmospheric CO2 variations and ocean circulation . Nature 308 , 624 – 626 .  

  32. Stephens , B. and Keeling , R . 2000 . The influence of Antarctic sea ice on glacial-interglacial CO2 variations . Nature 404 , 171 – 174 .  

  33. Stommel , H. 1961. Thermohaline convection with 2 stable regimes of flow. Tellus 13(2), 92 – 96.  

  34. Takahashi , T. et al, 1999 . Global air—sea flux of CO2: An estimate based on measurements of sea-air pCO2 difference . Proceedings of the Na-tional Academy of Sciences of the United States of America 94 ( 16 ), 8292 – 8299 .  

  35. Thual , O . and McWilliams, J. C. 1992. The catastrophe structure of ther-mohaline convection in a two-dimensional fluid model and a compari-son with low-order box models. Geophysical and Astrophysical Fluid Dynamics 64, 67 – 95.  

  36. Toggweiler , J. R. 1999. Variations of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 5, 571 – 588.  

  37. Toggweiler , J. R. , Gnanadesikan , A. , Carson , S. , Mumane , R. and Sarmiento , J. L. 2003. Representation of the carbon cycle in box models and GCMs, part 1, the solubility pump. Global Biogeochem. Cycles, 17(1), 1026, https://doi.org/10.1029/2001GB001401,2003 .  

comments powered by Disqus