Start Submission Become a Reviewer

Reading: Diurnal variations and vertical gradients of biogenic volatile and semi-volatile organic com...

Download

A- A+
Alt. Display

Original Research Papers

Diurnal variations and vertical gradients of biogenic volatile and semi-volatile organic compounds at the Tomakomai larch forest station in Japan

Authors:

Teruyo Ieda,

Institute of Low Temperature Science, Hokkaido University; Graduate School of Earth Environmental Science, Hokkaido University; Gerstel K.K., 2-13-18 Nakane, JP
X close

Yasuyuki Kitamor,

Institute of Low Temperature Science, Hokkaido University; Graduate School of Earth Environmental Science, Hokkaido University, JP
X close

Michihiro Mochida ,

Institute of Low Temperature Science, Hokkaido University, JP
X close

Ryuichi Hirata,

Graduate School of Agriculture; National Institute for Environmental Studies, JP
X close

Takashi Hirano,

Graduate School of Agriculture, JP
X close

Kou Inukai,

National Institute for Environmental Studies, JP
X close

Yasumi Fujinuma,

National Institute for Environmental Studies, JP
X close

Kimitaka Kawamura

Institute of Low Temperature Science, Hokkaido University, JP
X close

Abstract

Volatile and semi-volatile organic compounds (VOCs and SVOCs) in the atmosphere control oxidative capacity of the air and formation of organic aerosols. To investigate sources, variations and fluxes of VOCs and SVOCs in the forest atmosphere, samples were collected in a larch forest at different heights in Tomakomai, Japan, from 3 to 5 September 2003 and were analyzed for VOCs (isoprene and α-pinene) and SVOCs (n-nonanal, n-decanal, glycolaldehyde, hydroxyacetone, glyoxal and methylglyoxal) using GC-FID and GC-MS. Isoprene (8–851 pptv) showed a diurnal variation with a maximum in daytime, whereas diurnal pattern was indistinct for α-pinene (6–145 pptv). SVOCs showed diurnal variations similar to isoprene, suggesting their origin to be biogenic. Denuder samplings of SVOCs demonstrated that up to 60% of SVOCs were present in aerosol particles. n-Nonanal and n-decanal were more abundant at lower altitude, suggesting their primary emissions from vegetations. In contrast, other four SVOCs showed an opposite or no trend and are considered as oxidation products of biogenic precursors such as isoprene. The averaged upward fluxes of isoprene and α-pinene were obtained to be 34.8 and 9.8 ng m-2 s-1, respectively. Magnitudes of SVOC fluxes were comparable to those of α-pinene, indicating that SVOCs affect budgets of organic gases/aerosols over the forest.

How to Cite: Ieda, T., Kitamor, Y., Mochida, M., Hirata, R., Hirano, T., Inukai, K., Fujinuma, Y. and Kawamura, K., 2006. Diurnal variations and vertical gradients of biogenic volatile and semi-volatile organic compounds at the Tomakomai larch forest station in Japan. Tellus B: Chemical and Physical Meteorology, 58(3), pp.177–186. DOI: http://doi.org/10.1111/j.1600-0889.2006.00179.x
1
Views
1
Downloads
  Published on 01 Jan 2006
 Accepted on 8 Nov 2005            Submitted on 19 Mar 2005

References

  1. Beverland , I. J. , Milne , R. , Boissard , C. , ONO-ill , D. H. , Moncrieff , J. B. and Hewitt , C. N . 1996 . Measurement of carbon dioxide and hydro-carbon fluxes from a sitka spruce forest using micrometeorological techniques . J. Geophys. Res. 101 , 22 807-22 815 .  

  2. Fehsenfeld , E , Calvert , J. , Fall , R. , Goldan , P. , Guenther , A. B. , Hewitt , C. N. , Lamb , B. , Liu , S. , Trainer , M. , Westberg , H. and Zimmerman , P . 1992 . Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry . Global Biogiochem. Cycles 6 , 389 – 430 .  

  3. Finlayson-Pitts , B. J. and Pitts Jr., J. N. 2000 . Chemistry of the Upper and Lower Atmosphere . Academic Press , San Diego , CA , 969 pp .  

  4. Fruekilde , P. , Hjorth , J. , Jensen , N. R. , Kotzais , D. and Larsen , B . 1998 . Ozonolysis at vegetation surfaces: A source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere . At-mos. Environ . 32 , 1893 – 1902 .  

  5. Guenther , A. B. , Zimmerman , P. R. , Harley , P. C. , Monson , R. K. and Fall , R . 1993 . Isoprene and monoterpene emission rate variability—model evaluations and sensitivity analysis . J. Geophys. Res . 98 , 12609-12 617 .  

  6. Hirano , T. , Hirata , R. , Fujinuma , Y. , Saigusa , N. , Yamamoto , S. , Hara-zono , Y. , Takada , M. , Inukai , K. and Inoue , G . 2003 . CO2 and water vapor exchange of a larch forest in northern Japan . Tellus 55B , 244 – 257 .  

  7. Jain , M. K . 1984 . Numerical Solution of Differential Equations , 2nd Edition. Wiley , New York , NY , 698 pp .  

  8. Jang , M. , Czoschke , N. M. , Lee , S. and Kamens , R. M . 2002 . Hetero-geneous atmospheric aerosol producition by acid-catalyzed particle-phase reactions . Science 298 , 814 – 817 .  

  9. Kalberer , M. , Paulsen , D. , Sax , M. , Steinbacher , M. , Dommen , J. , Pre-vot , A. S. H. , Fisseha , R. , Weingartner , E. , Frankevich , V. , Zenobi , R. and Baltensperger , U . 2004 . Identification of polymers as major com-ponents of atmospheric organic aerosols . Science 303 , 1659 – 1662 .  

  10. Kavouras , I. G. , Mihalopoulos , N. and Stephanou , E. G . 1998 . Forma-tion of atmospheric particles from organic acids produced by forests . Nature 395 , 683 – 686 .  

  11. Kavouras , I. G. , Mihalopoulos , N. and Stephanou , E.G . 1999 . Formation of gas/particle partitioning of monoterpenes photo-oxidation products over forests . Geophys. Res. Lett . 26 , 55 – 58 .  

  12. Kesselmeier , J. and Staudt , M . 1999 . Biogenic volatile organic com-pounds (VOC): an overview on emission, physiology end ecology . J. Atoms. Chem . 33 , 23 – 88 .  

  13. Liggio , J. , Li , S.-H. and McLaren , R . 2005 . Heterogeneous reactions of glyoxal on particulate matter: Identification of acetals and sulfate esters . Environ. Sci. Technol . 39 , 1532 – 1541 .  

  14. Matsunaga , S. and Kawamura , K . 2000 . Determination of a- and 13- hy-droxycarbonyls and dicarbonyls in snow and rain samples by GC/FID and GC/MS employing benzyl hydroxyl oxime derivatization . Anal. Chem . 72 , 4742 – 4746 .  

  15. Matsunaga , S. , Mochida , M. and Kawamura , K . 2003 . Growth of or-ganic aerosols by biogenic semi-volatile carbonyls in the forestal at-mosphere . Atmos. Environ . 37 , 2045 – 2050 .  

  16. Matsunaga , S. , Mochida , M. and Kawamura , K . 2004 . Variation on the atmospheric concentrations of biogenic carbonyl compounds and their removal processes in the northern forest at Moshiri, Hokkaido Island in Japan./ . Geophys. Res . 109 , D04302 , https://doi.org/10.1029/2003JDO04100 .  

  17. Mochida , M. , Matsunaga , S. and Kawamura , K . 2003 . A model evalua-tion of the NO titration technique to remove atmospheric oxidants for the determination of atmospheric organic compounds . Environ. Sci. Technol . 37 , 1589 – 1597 .  

  18. Novakov , T. and Penner , J. E . 1993 . Large contribution of organic aerosols to cloud-condensation-nuclei concentrations . Nature 365 , 823 – 826 .  

  19. Paulson , S. E. , Flagan , R. C. and Seinfeld , J. H . 1992 . Atmospheric photooxidation of isoprene part II: The ozone-isoprene reaction . Int. J. Chem. Kinet . 24 , 103 – 125 .  

  20. Paulson , S. E. and Seinfeld , J. H . 1992 . Development and evaluation of a photooxidation mechanism for isoprene . J. Geophys. Res . 97 , 20 703-20 715 .  

  21. Tolocka , M. P. , Jang , M. , Ginter , J. M. , Cox , E J. , Kamens , R. M. and Johnston , M. V . 2004 . Formation of oligomers in secondary organic aerosol . Environ. Sci. Technol . 38 , 1428 – 1434 .  

comments powered by Disqus