Start Submission Become a Reviewer

Reading: Nitric acid partitioning in cirrus clouds: the role of aerosol particles and relative humidity

Download

A- A+
Alt. Display

Original Research Papers

Nitric acid partitioning in cirrus clouds: the role of aerosol particles and relative humidity

Authors:

M. Krämer ,

FZ Jülich, DE
X close

C. Schiller,

FZ Jülich, DE
X close

H. Ziereis,

DLR Oberpfaffenhofen, DE
X close

J. Ovarlez,

Lab. de Mét. Dyn. (LMPD), FR
X close

H. Bunz

FZ Karlsruhe, DE
X close

Abstract

Owing to the potential of cirrus clouds to vertically redistribute HNO3 in the upper troposphere, the uptake of HNO3 in ice particles is at the focus of recent research. Here, we investigate whether HNO3 residing in freezing aerosol particles could be a relevant source of HNO3 in ice clouds. To this end, model studies on the sensitivity of the uptake of HNO3 in aerosol particles to temperature, relative humidity with respect to ice (RHice), particle composition and amount of available HNO3 were performed. Combining the model results with the history of RHice during cirrus formation and comparison with field measurements indicates that at temperatures > 200 K a considerable part of the HNO3 in ice may originate from freezing particles containing HNO3.

How to Cite: Krämer, M., Schiller, C., Ziereis, H., Ovarlez, J. and Bunz, H., 2006. Nitric acid partitioning in cirrus clouds: the role of aerosol particles and relative humidity. Tellus B: Chemical and Physical Meteorology, 58(2), pp.141–147. DOI: http://doi.org/10.1111/j.1600-0889.2006.00177.x
  Published on 01 Jan 2006
 Accepted on 1 Nov 2005            Submitted on 25 Feb 2005

References

  1. Beyer , K. D. , Hanson , A. R. and Raddatz , N . 2004 . Experimental de-termination of the H2504/HNO3/H20 phase diagram in regions of stratospheric importance./ . Phys. Chem . 108 , 770 – 780 .  

  2. Bunz , H. , Koyro , M. and Mohler, 0. 2003. Impact of growth kinetics of electrolytic particles on their ice formation potential during AIDA expansion experiments. Geophysical Research Abstracts 5, 09904.  

  3. Chen , Y. , DeMott , P. J. , Kreidenweiss , S. M. , Rogers , D. C. and Sherman , D. E . 2000 . Ice formation by sulfate and sulfuric acid aerosol particles under upper-tropospheric conditions. J. Atmos. Sc i . 57 , 3752 – 3766 .  

  4. Clegg , S. L. , Brimblecombe , P. and Wexler , S. A . 1998. A ther-modynamic model of the system fl+-NH-4E — SO-NO-H2O at tropospheric temperatures. . 1. Phys. Chem. 102A, 2137-2154, (http://www.hpcl.uea.ac.uk/e770/aim.html).  

  5. Gao , R. S. , Popp , P. J. , Fahey , D. W. , Marcy , T. P. , Herman , R. L. and co-authors 2004. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science 303, 5657: 516 – 520.  

  6. Hudson , P. K. , Shilling , J. E. , Tolbert , M. A. and Toon, 0. B. 2002. Uptake of nitric acid on ice at tropospheric temperatures: Implications for cirrus clouds. J. Phys. Chem. A https://doi.org/10.1021/jp020508j .  

  7. Hynes , R. G. , Fernandez , M. A. and Cox , R. A . 2002 . The uptake of HNO3 on water ice and the co-adsorption of HNO3 and HC1 in the temperature range 210-235 K . J. Geophys. Res . 107 , 4797 , https://doi.org/10.1029/2001JDO01557 .  

  8. Irie H. , Kondo , Y. , Koike , M. , Takegawa , N. , Tabazadeh , A. , Reeves , J. M. , Sachse , G. W. , Vay , S. A. , Anderson , B. E. and Mahoney , M. J . 2004 . Liquid ternary aerosols of HNO3/H2504/H20 in the Arctic tropopause region . Geophys. Res. Lett . 31 , L01105 , https://doi.org/10.1029/2003GL018678 .  

  9. Jensen , E. , Pfister , L. , Bui , T. , Weinheimer , A. , Weinstock , E. , Smith , J. , Pittman , J. , Baumgardner , D. , Lawson , P. and McGill , M. J . 2005 . Formation of a tropopause cirrus layer observed over Florida during CRYSTAL-FACE . J. Geophys. Res . 110 , D03208 , https://doi.org/10.1029/2004JD004671 .  

  10. Karcher , B. and Solomon , S . 1999. On the composition and optical ex-tinction of particles in the tropopause region. J. Geophys. Res . 104 , 27441 – 27459.  

  11. Karcher , B. and Lohmann , U . 2002. A parametrization of cirrus cloud for-mation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res . 107 ( D2 ), https://doi.org/10.1029/2001JD000470 .  

  12. Karcher , B. and Lohmann , U . 2003 . A parametrization of cirrus cloud formation: Heterogeneous freezing . J. Geophys. Res . 108 , 4402 , https://doi.org/10.1029/2002JD003220 .  

  13. Karcher , B . 2003 . Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications . Atmos. Chem. Phys . 3 , 1645 – 1664 .  

  14. Kondo , Y. , Toon , O. B. , Irie , H. , Gamblin , B. , Koike , M. , Takegawa , N. , Tolbert , M. A. , Hudson , P. K. , Viggiano , A. A. , Avallone , L. M. , Hallar , A. G. , Anderson , B. E. , Sachse , G. W. , Vay , S. A. , Hunton , D. E. , Ballenthin , J. O. and Miller , T. M. 2003. Uptake of reactive nitrogen on cirrus cloud particles in the upper troposphere and lowermost strato-sphere. Geophys. Res. Lett. 30,4, 1154 , https://doi.org/10.1029/2002GL016539 .  

  15. Koop , T. , Luo , B. , Tsias , A. and Peter, Th. 2000 . Water activity as the determinant for homogeneous ice nucleation in aqueous solutions . Nature 406 , 611 – 614 , https://doi.org/10.1038/35020537 .  

  16. Kramer , M. , Beuermann , J. , Schiller , C. , Grimm , E , Arnold , E , Peter , Th , Meilinger , S. , Meier , A. , Hendricks , J. , Petzold , A. and Schlager , H . 2003 . Nitric acid partitioning in cirrus clouds: a synopsis based on field, laboratory and model studies . Atmos. Chem. Phys. Discuss . 3 , 413 – 443 .  

  17. Lawrence , M. and Crutzen , P . 1998 . The impact of cloud particle gravita-tional settling on soluble trace gas distributions . Tellus 50B , 263 – 289 .  

  18. Lin , J.-S. and Tabazadeh , A . 2001 . A parametrization of an aerosol phys-ical chemistry model for the NH3/H2SO4/1-1NO3/1-120 system at cold temperatures./ . Geophys. Res . 106 , 4815 – 4829 .  

  19. Luo , B. , Carslaw , K. S. , Peter Th. and Clegg , S. L . 1995 . Vapour pres-sures of H2504/HNO3/HC1/HBr/H20 solutions to low stratospheric temperatures./ . Geophys. Res . 22 , 247 – 250 .  

  20. Mangold , A. , Wagner , R. , Saathoff , H. , Schurath , U. , Giesemann , C. , Ebert , V. , Kramer , M. and Mohler, 0. 2005. Experimental investiga-tion of ice nucleation by different types of aerosols in the aerosol cham-ber AIDA: implications to microphysics of cirris clouds. Meteorol. Zeit. 14(4), 1 – 13.  

  21. Meier , A. and Hendricks , J . 2002 . Model studies on the sensitivity of up-per tropospheric chemistry to heterogeneous uptake of hno3 on cirrus ice particles . J. Geophys. Res . 107 , 4696 , https://doi.org/10.1029/2001JDO00735 .  

  22. Meilinger , S. K. , Tsias , A. , Dreiling , V. , Kuhn , M. , Feigl , Ch. , Ziereis , H. , Schlager , H. , Curtius , J. , Sierau , B. , Arnold , E , Zöger , M. , Schiller , C. and Peter , T . 1999 . HNO3 partitioning in cirrus clouds . Geophys. Res. Lett . 26 , 2207 – 2210 .  

  23. Mohler , O. , Stetzer , O. , Schafers , S. , Linke , C. , Schnaiter , M. , Tiede , R. , Saathoff , H. , Kramer , M. , Mangold , A. , Budz , P. , Zink , P. , Schreiner , J. , Mauersberger , K. , Haag , W. , Karcher B. and Schurath, U. 2003. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys. 3, 211 – 223.  

  24. Mohler , O. , Wagner , R. , Buttner , S. , Schnaiter , M. , Saathoff , H. , Stetzer, 0., Kramer, M., Mangold, A., Ebert, V. and Schurath, U. 2005. Effect of sulphuric acid coating on heterogeneous ice nu-cleation by soot aerosol particles. J. Geophys. Res . 110 , D11210, https://doi.org/10.1029/2004JD005169 .  

  25. Ovarlez , J. , Gayet , J.-E , Gierens , K. , Strom , J. , Ovarlez , H. , Auriol , E , Busen , R. and Schuhmann , U . 2002 . Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCA . Geophys. Res. Lett . 29 , 1813 , https://doi.org/10.1029/2001GL014440 .  

  26. Peter , Th. 1997 . Microphysics and heterogeneous chemistry of polar stratospheric clouds . Annu. Rev. Phys. Chem . 48 , 785 – 822 .  

  27. Popp , P. J. , Gao , R. S. , Marcy , T. P. , Fahey , D. W. , Hudson , P. K. and co-authors 2004. Nitric acid uptake on subtropical cirrus cloud parti-cles J. Geophys. Res . 109 , D06302, https://doi.org/10.1029/2003JDO04255 .  

  28. Romakkaniemi , S. , Kokkola , H. and Laaksonen , A . 2004 . Growth of upper tropospheric aerosols due to uptake of HNO3 . Atmos. Chem. Phys . 4 , 549 – 556 .  

  29. Spichtinger , P. , Gierens , K. , Smit , H. G. J. , Ovarlez , J. and Gayet , J.-E 2003 . On the distribution of relative humidity in cirrus clouds . Atmos. Chem. Phys . 4 ( 4 ), 639 – 647 .  

  30. Stuart , A. L. and Jacobson , M. Z . 2003. A timescale investigation of volatile chemical retention during hydrometeor freezing: Nonrime freezing and dry growth riming without spreading./. Geophys. Res. 108, https://doi.org/10.1029/2001JD001408 .  

  31. Tabazadeh , A. , Toon, 0. P. and Jensen, E. J. 1999. A surface chem-istry model for nonreactive trace gas adsorption on ice: Implications for nitric acid scavenging by cirrus. Geophys. Res. Letters 26, 2211 – 2214.  

  32. Weinheimer , A. J. , Campos , T. L. , Walega , J. G. , Grahek , E E. , Rodley , B. A. , Twohy , C. H. and Gandrud , B . 1998 . Uptake of NO, on wave—cloud ice particles , Geophys. Res. Lett . 25 , 1725 – 1728 .  

  33. Ziereis , H. , Minikin , A. , Schlager , H. , Gayet , J. E , Auriol , E , Stock , R , Baehr , J. , Petzold , A. , Schumann , U. , Weinheimer , A. , Ridle , B. and Strom , J . 2004 . Uptake of reactive nitrogen on cirrus cloud particles during INCA . Geophys. Res. Lett . 31 , L05115 . https://doi.org/10.1029/2003GL018794 .  

comments powered by Disqus