Start Submission Become a Reviewer

Reading: Aerosol number–size distributions during clear and fog periods in the summer high Arctic: 19...

Download

A- A+
Alt. Display

Original Research Papers

Aerosol number–size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001

Authors:

Jost Heintzenberg ,

Leibniz Institute for Tropospheric Research, DE
X close

Caroline Leck,

Department of Meteorology, Stockholm University, SE
X close

Wolfram Birmili,

Leibniz Institute for Tropospheric Research, DE
X close

Birgit Wehner,

Leibniz Institute for Tropospheric Research, DE
X close

Michael Tjernström,

Department of Meteorology, Stockholm University, SE
X close

Alfred Wiedensohler

Leibniz Institute for Tropospheric Research, DE
X close

Abstract

The present study covers submicrometer aerosol size distribution data taken during three Arctic icebreaker expeditions in the summers of 1991, 1996 and 2001. The size distributions of all expeditions were compared in log-normally fitted form to the statistics of the marine number size distribution provided by Heintzenberg et al. (2004) yielding rather similar log-normal parameters of the modes. Statistics of the modal concentrations revealed strong concentration decreases of large accumulation mode particles with increasing length of time spent over the pack ice. The travel-time dependencies of both Aitken and ultrafine modes strongly indicate, as other studies did before, the occurrence of fine-particle sources in the inner Arctic.

With two approaches evidence of fog-related aerosol source processeswas sought for in the data sets of 1996 and 2001 because they included fog drop size distributions. With increasing fog intensity modes in interstitial particle number concentrations appeared in particular in the size range around 80 nm that was nearly mode free in clear air.

A second, dynamic approach revealed that Aitken mode concentrations increased strongly above their respective fog-period medians in both years before maximum drop numbers were reached in both years. We interpret the results of both approaches as strong indications of fog-related aerosol source processes as discussed in Leck and Bigg (1999) that need to be elucidated with further data from dedicated fog experiments in future Arctic expeditions in order to understand the life cycle of the aerosol over the high Arctic pack ice area.

How to Cite: Heintzenberg, J., Leck, C., Birmili, W., Wehner, B., Tjernström, M. and Wiedensohler, A., 2006. Aerosol number–size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001. Tellus B: Chemical and Physical Meteorology, 58(1), pp.41–50. DOI: http://doi.org/10.1111/j.1600-0889.2005.00171.x
  Published on 01 Jan 2006
 Accepted on 30 Aug 2005            Submitted on 2 Jun 2005

References

  1. Barrie , L. , Ahier , B. , Bottenheim , J. , Niki , H. and Nriagu , J . 1992 . Atmo-spheric methane and sulphur compounds at a remote Central Canadian location . Atmos. Env . 26A , 907 – 925 .  

  2. Bigg , E. K. , Leck , C. and Tranvik , L . 2004 . Particulates of the surface microlayer of open water in the central Arctic Ocean in summer . Mar. Chem . 91 , 131 – 141 .  

  3. Birmili , W. , Stratmann, E and Wiedensohler, A. 1999. Design of a DMA-based size spectrometer for a large particle size range and stable op-eration. J. Aerosol. Sci. 30, 549 – 553.  

  4. Clarke , A. D. , Varner , J. L. , Eisele , E , Mauldin, R. L. and Tanner, D. 1998. Particle production in the remote marine atmosphere: cloud outflow and subsidence during ACE 1. J. Geophys. Res . 103 , 16 397-16 409. Clarke, A. D., Kapustin, V. N., Eisele, E L., Weber, R. J. and McMurry, P. H. 1999. Particle production near marine clouds: sulfuric acid and predictions from classical binary nucleation. Geophys. Res. Lett. 26, 2425 – 2428.  

  5. Covert , D. S. , Wiedensohler , A. , Aalto , P. , Heintzenberg , J. , McMurry , P. H and co-authors. 1996. Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn. Tellus 48B, 197 – 212.  

  6. Curry , J. A . 1986 . Interactions among turbulence, radiation and micro-physics in Arctic stratus clouds . J. Atmos. Sci . 43 , 90 – 106. Heintzenberg, J. and Larssen, S. 1983. SO2 and SO4 in the Arctic: in-terpretation of observations at three Norwegian Arctic-subArctic sta-tions . Tellus 35B , 255 – 265 .  

  7. Heintzenberg , J. and Leck , C . 1994 . Seasonal variation of the atmo-spheric aerosol near the top of the marine boundary layer over Spits-bergen related to the Arctic sulphur cycle . Tellus 46B , 52 - 67 .  

  8. Heintzenberg , J. , Wendisch , M. , Yuskiewicz , B. , Orsini , D. , Wieden-sohler , A. and co-authors . 1998 . Characteristics of haze, mist and fog . Contrib. Atmos. Phys . 71 , 21 – 30 .  

  9. Heintzenberg , J. , Birmili , W. , Wiedensohler , A. , Nowak , A. and Tuch , T . 2004 . Structure, variability and persistence of the submicrometer marine aerosol . Tellus 56B , 357 – 367 .  

  10. Huschke , R. E . 1969. Arctic cloud statistics from “air calibrated” surface weather observations. Rand Corporation Memo, RM 6173-PR, 79. Intrieri, J. M., Shupe, M. D., Uttal, T. and McCarty, B. J. 2002. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA./. Geophys. Res. 107, doi https://doi.org/10.1029/2000JC000423 .  

  11. Kumai , M . 1973 . Arctic fog droplet size distribution and its effect on light attenuation . J. Atmos. Sci . 30 , 635 – 643 .  

  12. Lannefors , H. , Heintzenberg , J. and Hansson, H.-C. 1983. A comprehen-sive study of physical and chemical parameters of the Arctic summer aerosol; results from the Swedish expedition Ymer-80. Tellus 35B, 40 – 54.  

  13. Leck , C. , Bigg , E. K. , Covert , D. S. , Heintzenberg , J. , Maen-haut , W. and co-authors. 1996. Overview of the atmospheric re-search program during the International Arctic Ocean Expedition of 1991 (IA0E-91) and its scientific results. Tellus 48B, 136 – 155.  

  14. Leck , C. and Persson , C . 1996a . Seasonal and short-term variability in dimethyl sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles in the arctic marine boundary layer, during summer and autumn . Tellus 48B , 272 – 299 .  

  15. Leck , C. and Persson , C . 1996b . The central Arctic Ocean as a source of dimethyl sulfide Seasonal variability in relation to biological activity . Tellus 48B , 156 – 177 .  

  16. Leck , C. and Bigg , E. K . 1999 . Aerosol production over remote marine areas-a new route . Geophys. Res. Lett . 23 , 3577 – 3581 .  

  17. Leck , C. and Bigg , E. K . 2005 . Biogenic particles in the surface micro-layer and overlaying atmosphere in the central Arctic Ocean during summer . Tellus 57B , 205 – 316 .  

  18. Leck , C. , Nilsson , E. D. , Bigg , E. K. and Bäcklin, L. 2001. The atmo-spheric program on the Arctic Ocean Expedition 1996 (AOE-96): an overview of scientific goals, experimental approach, and instruments. J. Geophys. Res . 106 , 32051 – 32067.  

  19. Leck , C. , Tjemstrom , M. , Matrai , P. , Swietlicki , E. and Bigg , K. 2004. Can marine micro-organisms influence melting of the Arctic pack ice? EOS 85, 25 – 36.  

  20. Maenhaut , W. , Ducastel , G. , Leck , C. , Nilsson , E. D. and Heintzenberg , J . 1996.  

  21. Multielemental composition and sources of the high Arctic atmospheric aerosol during summer and autumn 1991 . Tellus 48B , 300 – 321 .  

  22. McGrath , R . 1989 . Trajectory Models and Their Use in the Irish Mete-orological Service. Irish Meteorological Service, Dublin, 112/89. Nilsson, E. D. 1996. Planetary boundary layer structure and air mass transport during the International Arctic Ocean Expedition 1991 . Tel-lus 48B , 178 – 196 .  

  23. Radke , L. E and Hobbs , P. V . 1991 . Humidity and particle fields around some small cumulus clouds . J. Atmos. Sci . 48 , 1190 – 1193 .  

  24. Stolzenburg , M. R . 1988 . An Ultrafine Aerosol Size Distribution Mea-suring System . PhD Thesis. University of Minnesota, Minneapolis , Minnesota .  

  25. Tjemstrom , M. , Leck , C. , Persson, P. 0. G., Jensen, M. L. and On-cley, S. P. 2004a. The summertime Arctic atmosphere: meteorological Measurements during the Arctic Ocean Experiment 2001. Bull. Amer. Meteor. Soc. 85, 1305 – 1321.  

  26. Tjemstrom , M. , Leck , C. , Persson , P. O. G. , Jensen , M. L. , Oncley , S. P . and co-authors 2004b . Experimental equipment: a Supplement to “The summertime Arctic Atmosphere: meteorological measurements during the Arctic Ocean Experiment 2001”. Bull. Am. Meteorol. Soc. 85 , 10.1175/BAMS-85-9-Tjemstrom.  

  27. Tjemstrom , M . 2005. The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001). Bound.-Layer Meteor. (in press).  

  28. Wiedensohler , A. , Covert , D. , Swietlicki , E. , Aalto , P. , Heintzenberg , J. and co-authors. 1996. Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer of the Arctic summer and autumn. Tellus 48B, 213 – 222.  

  29. Wiedensohler , A. , Hansson , H.-C. , Orsini , D. , Wendisch , M. , Wagner, E and co-authors. 1997. Night-time formation and occurrence of new particles associated with orographic clouds. Atmos. Env. 31, 2545 – 2559.  

comments powered by Disqus