Start Submission Become a Reviewer

Reading: The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change

Download

A- A+
Alt. Display

Original Research Papers

The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change

Authors:

Andrew J. Watson ,

School of Environmental Sciences, University of East Anglia, GB
X close

Alberto C. Naveira Garabato

School of Environmental Sciences, University of East Anglia, GB
About Alberto C. Naveira
Present address: National Oceanography Centre, Southampton, S014 3ZH, United Kingdom.
X close

Abstract

Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO2. Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deepwaters of the Southern Ocean. Between the surface and∼2000m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale.

We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air–sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO2 could then be explained as a natural consequence of the connection between the air–sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO2. Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO2 in such a formulation.

How to Cite: Watson, A.J. and Garabato, A.C.N., 2006. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change. Tellus B: Chemical and Physical Meteorology, 58(1), pp.73–87. DOI: http://doi.org/10.1111/j.1600-0889.2005.00167.x
5
Views
2
Downloads
  Published on 01 Jan 2006
 Accepted on 12 Jul 2005            Submitted on 10 Feb 2005

References

  1. Adkins , J. E , McIntyre , K. and Schrag , D. P . 2002 . The salinity, temper-ature, and delta 0-18 of the glacial deep ocean . Science 298 , 1769 – 1773 .  

  2. Anderson , D. M. and Archer , D . 2002 . Glacial-interglacial stability of ocean pH inferred from foraminifera dissolution rates . Nature 416 , 70 – 73 .  

  3. Archer , D. , Winguth , A. , Lea , D. and Mahowald , N . 2000a . What caused the glacial/interglacial atmospheric pCO2 cycles? Rev. Geophys . 38 , 159 – 189 .  

  4. Archer , D. E. , Eshel , G. , Winguth , A. , Broecker , W. , Pierrehumbert , R. , Tobis , M. and Jacob , R. 2000b. Atmospheric pCO2 sensitivity to the biological pump in the ocean. Global Biogeochem. Cyc. 14, 1219 – 1230.  

  5. Bopp , L. , Kohfeld , K. E. , Le Quere , C. and Aumont, 0. 2003. Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanogr. 18, art. no.-1046.  

  6. Broecker , W. , Lynch-Stieglitz , J. , Archer , D. , Hofmann , M. , Maier-Reimer, E., Marchal, 0., Stocker, T. and Gruber, N. 1999. How strong is the Harvardton-Bear constraint? Global Biogeochem. Cyc. 13, 817 – 820.  

  7. Bryden , H. L. and Cunningham , S. A . 2003. How wind-forcing and air-sea heat exchange determine the meridional temperature gradient and stratification for the Antarctic Circumpolar Current./. Geophys. Res. - Oceans 108, 10.1029,2001JC0011296.  

  8. Crosta , X. , Pichon , J. J. and Burckle , L. H . 1998a . Application of mod-em analog technique to marine Antarctic diatoms: reconstruction of maximum sea-ice extent at the Last Glacial Maximum . Paleoceanogr . 13 , 284 – 297 .  

  9. Crosta , X. , Pichon , J. J. and Burckle , L. H . 1998b . Reappraisal of Antarc-tic seasonal sea ice at the Last Glacial Maximum , Geophys. Res. Lett . 25 , 2703 – 2706 .  

  10. Egbert , G. D. , Ray , R. D. and Bills , B. G. 2004. Numerical mod-eling of the global semidiumal tide in the present day and in the last glacial maximum. J. Geophys. Res . 109 , C03003, https://doi.org/10.1029/2003JC001973 .  

  11. Ganachaud , A. and Wunsch , C . 2000 . Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data . Nature 408 , 453 – 457 .  

  12. Gent , P. R. , Large , W. G. and Bryan, E 0. 2001. What sets the mean transport through Drake Passage? J. Geophys. Res. - Oceans 106, 2693 – 2712.  

  13. Gersonde , R. and Zielinski , U . 2000 . The reconstruction of late Quater-nary Antarctic sea ice distribution - the use of diatoms as a proxy for sea ice . Paleogeogr., Paleoclim., Paleoecol ., 162 , 263 – 286 .  

  14. Gersonde , R. , Crosta , X. , Abelmann , A. and Armand , L . 2005 . Sea sur-face termparature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum - a circum-Antarctic view based on siliceous microfossil records . Quat. Sci. Rev . 24 , 869 – 896 .  

  15. Gill , A. E . 1982 . Atmosphere and ocean dynamics . Cambridge University Press .  

  16. Goldson , L. E . 2004 . Determining vertical mixing rates in the near-surface Southern Ocean using SF6 releases . PhD thesis , School of Environmental Sciences , U. East Anglia .  

  17. Haine , T. W. N. , Watson , A. J. , Liddicoat , M. I. and Dickson , R. R . 1998 . The flow of Antarctic bottom water to the southwest Indian Ocean estimated using CFCs . J. Geophys. Res. - Oceans 103 , 27637 – 27653 .  

  18. Heywood , K. J. , Naveira Garabato , A. C. and Stevens , D. P . 2002 . High mixing rates in the abyssal Southern Ocean . Nature 415 , 1011 – 1014 .  

  19. Karsten , R. H. and Marshall , J . 2002 . Constructing the residual circula-tion of the ACC from observations . J. Phys. Oceanogr . 32 , 3315 – 3327 .  

  20. Keeling , R. E 2002. On the freshwater forcing of the thermohaline circu-lation in the limit of low diapycnal mixing. J. Geophys. Res. - Oceans 107, https://doi.org/10.1029/2000JC000685 .  

  21. Keeling , R. E and Stephens , B. B . 2001 . Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanogr . 16 , 112 – 131. Keeling, R. and Visbeck, M. 2001. Palaeoceanography - Antarctic strat-ification and glacial CO2. Nature 412 , 605 – 606 .  

  22. Knox, E and McElroy, M. B . 1984 . Changes in atmospheric CO2 - In-fluence of the marine biota at high-latitude . J. Geophys. Res. - Atmos . 89 , 4629 – 4637 .  

  23. Law , C. S. , Abraham , E. R. , Watson , A. J. and Liddicoat , M. I . 2003. Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current./. Geophys. Res. - Oceans 108, https://doi.org/10.1029/2002JC001604 .  

  24. Ledwell , J. R. , Watson , A. J. and Law , C. S . 1998 . Mixing of a tracer in the pycnocline . J. Geophys. Res. - Oceans 103 , 21499-21 529 .  

  25. Ledwell , J. R. , Montgomery , E. T. , Polzin , K. L. , St. Laurent , L. C. , Schmitt , R. W. and Toole , J. M. 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403 , 179 – 182.  

  26. Mantyla , A. W. and Reid , J. L . 1983 . Abyssal characteristics of the World Ocean waters . Deep-Sea Res. A 30 , 805 – 833 .  

  27. Marshall , D . 1997 . Subduction of water masses in an eddying ocean . J. Mar. Res . 55 , 201 – 222 .  

  28. McCulloch , R. D. , Bentley , M. J. , Purves , R. S. , Hulton , N. R. J. , Sugden , D. E. and Clapperton , C. M. 2000. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Quat. Sci. 15 , 409 – 417.  

  29. Monnin , E. , Indermuhle , A. , Dallenbach , A. , Fluckiger , J. , Stauffer , B. , Stocker , T. E , Raynaud , D. and Barnola , J. M . 2001 . Atmospheric CO2 concentrations over the last glacial termination . Science 291 , 112 – 114 .  

  30. Munk , W. H . 1966 . Abyssal recipes. Deep-Sea Res . 13 , 707 – 730. Munk, W. and Wunsch, C. 1998. Abyssal recipes H: energetics of tidal and wind mixing. Deep-Sea Res. I , 45 , 1977 – 2010 .  

  31. Naveira Garabato , A. C. , Polzin , K. L. , King , B. A. , Heywood , K. J. and Visbeck , M. 2004. Widespread intense turbulent mixing in the Southern Ocean. Science 303, 210 – 213.  

  32. Nilsson , J. , Brostrom , G. and Walin , G . 2003 . The thermohaline cir-culation and vertical mixing: does weaker density stratification give stronger overturning? J. Phys. Oceanogr . 33 , 2781 – 2795 .  

  33. Nilsson , J. , Brostrom , G. and Walin , G . 2004 . On the spontaneous tran-sition to asymmetric thermohaline circulation . Tellus 56A , 68 – 78 .  

  34. Others , D. , Borowski , D. , Volker , C. and Wolff, J.-0. 2004. The dynam-ical balance, circulation and transport of the Antarctic Circumpolar Current. Antarct. Sci. 16, 439 – 470.  

  35. Orsi , A. H. , Johnson , G. C. and Bullister , J. L. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Progr. Oceanogr. 43, 55 – 109.  

  36. Polzin , K. L. , Toole , J. M. , Ledwell , J. R. and Schmitt , R. W. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 93 – 96.  

  37. Redi , M . 1982 . Oceanic isopycnal mixing by co-ordinate rotation . J. Phys. Oceanogr . 12 , 1154 – 1157 .  

  38. Rintoul , S. R . 1998 . On the origin and influence of Adélie Land Bottom Water . In: Ocean , ice and atmosphere: Interactions at the Antarctic continental margin. Antarctic Research Series (eds. S. S. Jacobs and R. F. Weiss ), 151 – 171 .  

  39. Robinson , R. S. , Brunelle , B. G. and Sigman , D. M . 2004. Revis-iting nutrient utilization in the glacial Antarctic: evidence from a new method for diatom-bound N isotopic analysis. Paleoceanogr. 19, https://doi.org/10.1029/2003PA000996 .  

  40. Sarmiento , J. L. and Toggweiler , J. R . 1984 . A new model for the role of the oceans in determining atmospheric pCO2 . Nature 308 , 621 – 624 .  

  41. Shemesh , A. , Hodell , D. , Crosta , X. , Kanfoush , S. , Charles , C. and Guilderson , T. 2002. Sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores. Paleoceanogr. 17, https://doi.org/10.1029/2000PA000599 .  

  42. Siegenthaler , U. and Wenk , T . 1984 . Rapid atmospheric CO2 variations and ocean circulation . Nature 308 , 624 – 626 .  

  43. Sigman , D. M. and Boyle , E. A . 2000 . Glacial/interglacial variations in atmospheric carbon dioxide . Nature 407 , 859 – 869 .  

  44. Sloyan , B. M. and Rintoul , S. R . 2001 . Circulation, renewal, and modi-fication of Antarctic mode and intermediate water . J. Phys. Oceanogr . 31 , 1005 – 1030 .  

  45. Speer , K. , Guilyardi , E. and Madec , G . 2000 . Southern Ocean transfor-mation in a coupled model with and without eddy mass fluxes . Tellus 52A , 554 – 565 .  

  46. Stephens , B. B. and Keeling , R. E 2000 . The influence of Antarctic sea ice on glacial-interglacial CO2 variations . Nature 404 , 171 – 174 .  

  47. Talley , L. D . 1999. Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. In: Mechanisms of global climate change at millenial time scales (eds.P. U. Clark, R. S. Webb and L. D. Keigwin). American Geophysical Union, Washington DC, 1 – 22.  

  48. Toggweiler , J. R . 1999 . Variation of atmospheric CO2 by ventilation of the ocean's deepest water , Paleoceanogr . 14 , 571 – 588 .  

  49. Toggweiler , J. R. and Samuels , B . 1995 . Effect of Drake Passage on the global thermohaline circulation . Deep-Sea Res. I 42 , 477 – 500 .  

  50. Toggweiler , J. R. and Samuels , B . 1998 . On the ocean's large-scale circulation near the limit of no vertical mixing./ . Phys. Oceanogr . 28 , 1832 – 1852 .  

  51. Toggweiler , J. R. , Gnanadesikan , A. , Carson , S. , Mumane , R. and Sarmiento , J. L. 2003a. Representation of the carbon cycle in box models and GCMs: 1. Solubility pump. Global Biogeochem. Cyc. 17 , https://doi.org/10.1029/2001GB001401 .  

  52. Toggweiler , J. R. , Mumane , R. , Carson , S. , Gnanadesikan , A. and Sarmiento , J. L. 2003b. Representation of the carbon cycle in box models and GCMs - 2. Organic pump. Global Biogeochem. Cyc. 17, https://doi.org/10.1029/2001GB001401 .  

  53. Toole , J. M. , Polzin , K. L. and Schmitt , R. W . 1994 . Estimates of diapy-cnal mixing in the abyssal ocean . Science 264 , 1120 – 1123 .  

  54. Walin , G . 1982 . On the relation between sea-surface heat-flow and thermal circulation in the ocean . Tellus 34 , 187 – 195 .  

  55. Watson , A. J. , Bakker , D. C. E. , Ridgwell , A. J. , Boyd , P. W. and Law , C. S . 2000 . Effect of iron supply on Southern Ocean CO2 up-take and implications for glacial atmospheric CO2 . Nature 407 , 730 – 733 .  

  56. Webb , D. J. and Suginohara , N. 2001. Oceanography - Vertical mixing in the ocean. Nature 409 , 37 – 37.  

  57. Whitworth , T. , Nowlin , W. D. , Orsi , A. H. , Locamini , R. A. and Smith , S. G. 1994. Weddell Sea Shelf Water in the Bransfield Strait and Weddell-Scotia Confluence. Deep-Sea Res. I 41 , 629 – 641.  

comments powered by Disqus