Start Submission Become a Reviewer

Reading: Aerosol modelling for regional climate studies: application to anthropogenic particles and e...

Download

A- A+
Alt. Display

Original Research Papers

Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain

Authors:

F. Solmon ,

Abdus Salam International Center for theoretical Physics, IT
X close

F. Giorgi,

Abdus Salam International Center for theoretical Physics, IT
X close

C. Liousse

Laboratoire d’aérologie, FR
X close

Abstract

A simplified anthropogenic aerosol model for use in climate studies is developed and implemented within the regional climate model RegCM. The model includes sulphur dioxide, sulphate, hydrophobic and hydrophilic black carbon (BC) and organic carbon (OC) and is run for the winter and summer seasons of 2000 over a large domain extending from northern Europe to south tropical Africa. An evaluation of the model performance is carried out in terms of surface concentrations and aerosol optical depths (AODs). For sulphur dioxide and sulphate concentration, comparison of simulated fields and experimental data collected over the EMEP European network shows that the model generally reproduces the observed spatial patterns of near-surface sulphate. Sulphate concentrations are within a factor of 2 of observations in 34% (JJA) to 57% (DJF) of cases. For OC and BC, simulated concentrations are compared to different datasets. The simulated and observed values agree within a factor of 2 in 56% (DJF) to 62% (JJA) of cases for BC and 33% (JJA) to 64% (DJF) for OC. Simulated AODs are compared with ground-based (AERONET) and satellite (MODIS, MISR, TOMS) AOD datasets. Simulated AODs are in the range of AERONET and MISR data over northern Europe, and AOD spatial patterns show consistency with MODIS and TOMS retrievals both over Europe and Africa. The main model deficiencies we find are: (i) an underestimation of surface concentrations of sulphate and OC during the summer and especially over the Mediterranean region and (ii) a general underestimation of AOD, most pronounced over the Mediterranean basin. The primary factors we identify as contributing to these biases are the lack of natural aerosols (in particular, desert dust, secondary biogenic aerosols and nitrates), uncertainties in the emission inventories and aerosol cycling by moist convection. Also, in view of the availability of better observing datasets (e.g. as part of the AMMA project), we are currently working on improving these aspects of the model before applying it to climate studies. Despite the deficiencies identified above, we assess that our model shows a performance in line with that other coupled climate/aerosol models and can presently provide a useful tool for sensitivity and process studies.

How to Cite: Solmon, F., Giorgi, F. and Liousse, C., 2006. Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B: Chemical and Physical Meteorology, 58(1), pp.51–72. DOI: http://doi.org/10.1111/j.1600-0889.2005.00155.x
1
Views
1
Downloads
  Published on 01 Jan 2006
 Accepted on 29 Mar 2005            Submitted on 22 Nov 2004

References

  1. Bemer , A. , Sidla , S. , Galambos , Z. , Kruisz , C. and Hitzenberger , R . 1996. Modal character of atmospheric black carbon size distributions. J. Geophys. Res . 101 , 19559 – 19565.  

  2. Bessagnet , B. , Hodzic , A. , Vautard , R. , Beekmann , M. , Cheinet , S. and co-authors. 2004. Aerosol modeling with CHIMERE- preliminary evaluation at the continental scale. Atmos. Environ. 38, 2803 – 2817.  

  3. Bizjak , M. , Tursic , J. , Lesnjak , M. and Cegnar , T . 1999 . Aerosol black carbon and ozone measurements at Mt. Krvavec EMEP GAW station, Slovenia . Atmos. Environ . 33 , 2783 – 2787 .  

  4. Bond , T. C. , Streets , D. G. , Yarber , K. E , Nelson , S. M. , Woo , J. H. and co-authors. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res . 109 , D14203, https://doi.org/10.1029/2003JDO03697 .  

  5. Cachier , H . 1998 . Carbonaceous combustion Aerosols. In: Atmospheric Particles (eds. R. M. Harisson , and R. V. Van Grieken) pp. 296-323 , John Willey and Sons Ltd , New York .  

  6. Cachier , H. , Bremond , M. P. and Buat-Menard , P . 1989 . Determination of atmospheric soot carbon with a simple thermal method . Tellus 41B , 379 – 390 .  

  7. Cachier , H. , Bremond , M. P. and Buat-Menard, P. 1990. Organic and black carbon aerosols over marine regions of the Northern Hemisphere. In: Proceedings of the International Conference on Global and Regional Environmental Atmospheric Chemistry (eds. L. Newman et al), pp. 249-261, Dept. of Energy, Brookhaven Natl. Lab., Upton, NY.  

  8. Cachier , H. , Sarda-Esteve , R. , Oikonomou , K. , Sciare , J. , Bonazza , A. and co-authors. 2004. Aerosol characterization and sources in different European urban atmospheres: Paris, Seville, Florence and Milan.  

  9. Castro , L. M. , Pio , C. A. , Harrison , R. M. and Smith , D. J. T. 1999. Carbonaceous aerosol in urban and rural European atmospheres: esti-mation of secondary organic carbon concentrations. Atmos. Environ. 33, 2771 – 2781.  

  10. Chameides , W. L . 1984 . The photochemistry of a remote marine strati-form cloud . J. Geophys. Res . 89 , 4739 – 4755 .  

  11. Chin , M. , Ginoux , P. , Kinne , S. , Torres , O. , Holben , B. N. and co-authors. 2002. Tropospheric aerosol optical thickness from the GO-CART model and comparisons with satellite sunphotometer measure-ments. J. Atmos. Sci . 59 , 461 – 483.  

  12. Chung , S. H. and Seinfeld , J. H. 2002. Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res . 107 , D194407, https://doi.org/10.1029/2001JDO01397 .  

  13. Cooke , W. E , Liousse , C. , Cachier , H. and Feichter , J. 1999. Construction of a 10 x 10 degree fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res . 104 , 22137 – 22162.  

  14. Cooke , W. E , Ramaswamy , V. and Kasibhatla , P. 2002. A general circu-lation model study of the global carbonaceous aerosol distribution. J. Geophys. Res . 107(016), 4279, https://doi.org/10.1029/2001JD001274 .  

  15. Cubasch , U ., Meehl , G. A. , Boer , G. J. , Stouffer , R. J. , Dix , M . and co-authors . 2001. Projections of future climate change. In: Chapter 9 of Climate Change 2001; The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (eds. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaoxu) Cambridge University Press , Cambridge , UK, pp. 525-582.  

  16. Dickinson , R. , Henderson-Sellers , A. and Kennedy , P . 1993 . Biosphere-atmosphere transfer scheme (BATS) version le as coupled to the NCAR community climate model . Technical Report NCAR/TN-387 STR , NCAR Boulder , Colorado .  

  17. Duncan , B. , Portman , D. , Bey , I. and Spivakovsky , C . 2000 . Parameter-ization of OH for efficient computation in chemical tracer models . J. Geophys. Res . 105 , 12 259 – 12262 .  

  18. Dzubay , T. G. , Stevens , R. K. and Haagenson , P. L . 1984 . Composi-tion and origins of aerosol at a forested mountain in Soviet Georgia . Environ. Sci. Technol . 18 , 873 – 883 .  

  19. Ekman , A. M. L. and Rodhe , H . 2003 . Regional temperature response due to indirect sulfate aerosol forcing: impact of model resolution . Clim. Dyn . 21 , 1 – 10 .  

  20. Galy-Lacaux , C. , Liousse , C. , Guillaume , B. , Rosset , R. , Gardrat , E. and co-authors. 2004. Carbonaceous aerosols at the elevation site Pic du Midi (Pyrenees, France). 7eme International conference on carbona-ceous aerosols, Vienna, 14-16 of September.  

  21. Generoso , S. , Breon , E M. , Balkanski , Y. Boucher , O . and Schulz , M . 2003. Improving the seasonal cycle and interannual variations of biomass burning aerosol sources . Atmos. Chem. Phys. Discuss . 3 , 1973– 1989 .  

  22. Giorgi , E 1989 . Two-dimensional simulations of possible mesoscale effects of nuclear war fires. I: model description . J. Geophys. Res . 94 , 1127 – 1144 .  

  23. Giorgi , E and Chameides , W. L. 1986 . Rainout lifetimes of highly sol-uble aerosols and gases as inferred from simulations with a general circulation model . J. Geophys. Res . 91 , 14367 – 14376 .  

  24. Giorgi , E , Marinucci , M. R. and Bates , G. T . 1993a . Development of a second generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes . Mon. Weather Rev . 121 , 2794 – 2813 .  

  25. Giorgi , E , Marinucci , M. R. , Bates , G. T. and De Canio , G . 1993b . De-velopment of a second generation regional climate model(RegCM2). Part II: convective processes and assimilation of lateral boundary con-ditions . Mon. Weather Rev . 121 , 2814 – 2832 .  

  26. Giorgi , E and Meams , L. O . 1999 . Introduction to special section: re-gional climate modeling revisited . J. Geophys. Res . 104 , 6335 – 6352 .  

  27. Giorgi , E , Bi , X. and Qian , Y . 2002. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over east Asia: a regional coupled climate-chemistry/aerosol model study. J. Geophys. Res . 107 , no. d16, https://doi.org/10.1029/2001JD001274 .  

  28. Giorgi , E , Bi , X. and Qian , Y . 2003 . Indirect versus direct effects of anthropogenic sulfate on the climate of east Asia as simulated with a regional coupled climate-chemistry/aerosol model . Clim. Change 58 , 345 – 376 .  

  29. Grell , G. A . 1993 . Prognostic evaluation of assumptions used by cumulus parameterizations . Mon. Weather Rev . 121 , 764 – 787 .  

  30. Grell , G. A. , Dudhia , J. and Stauffer , D. R. 1994. A description of the fifth-generation Penn State-NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398±STR, National Center for Atmospheric Research, Boulder, Colorado, 122.  

  31. Haywood , J. M. and Boucher, 0. 2000. Estimates of the direct and in-direct radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 38, 513 – 543.  

  32. Heintzenberg , J. , Muller , K. , Birmili , W. , Spindler , G. and Wiedensohler , A. 1998. Mass-related aerosol properties over the Leipzig basin. J. Geophys. Res . 103 , 13125 – 13135.  

  33. Hitzenberger , R. , Berner , A. , Giebl , H. , Koch , R. , Larson , S. M. and co-authors. 1999. Contribution of carbonaceous material to cloud conden-sation nuclei concentrations in European background (Mt. Sormblick) and urban (Vienna) aerosols. Atmos. Environ. 33, 2647 – 2659.  

  34. Holben , B. N. , Eck , T. E , Slutsker , I. , Tanre , D. , Buis , J. P and co-authors. 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1 – 16.  

  35. Holtslag , A. A. M. , de Bruijin , E. I. E and Pan , H. L . 1990. A high res-olution air mass transformation model for short-range weather fore-casting. Mon. Weather Rev . 118 , 1561 – 1575 .  

  36. Ichoku , C. , Kaufman , Y. J. , Remer , L. A. and Levy , R. 2004. Global aerosol remote sensing from MODIS. Adv. Space Res. 34, 820 – 827.  

  37. Janssen , N. A. H. , VanMansom, D. FM. , VanDerJagt , K. , Harssema , H. and Hoek , G . 1997 . Mass concentration and elemental composition of airborne particulate matter at street and background locations . Atmos. Environ . 31 , 1185 – 1193 .  

  38. Jeuken , A. , Veefkind , P. , Dentener , E , Metzger , S. and Robles Gonzalez , C . 2001. Simulation of the aerosol optical depth over Europe for Au-gust 1997 and a comparison with observations. J. Geophys. Res . 106 , 28295 – 28311.  

  39. Jones , C. , Mahowald , N. and Luo , C . 2003 . The role of easterly waves in African desert dust transport . J. Clim . 16 , 3617 – 3628 .  

  40. Kalnay , M. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. and co-authors. 1996. The NCEP/NCAR 40-yr re-analysis project. Bull. Am. Meteorol. Soc. 77, 437 – 471.  

  41. Kasibhatla , P. , Chameides , W. L. and St. John , J . 1997 . A three-dimensional global model investigation of seasonal variation in the atmospheric burden of anthropogenic sulfate aerosols . J. Geophys. Res . 102 , 3737 – 3759 .  

  42. Kasten , E 1969 . Visibility in the prephase of condensation . Tellus 21 , 631 – 635 .  

  43. Kaufman , Y. J. , Tanre , D. , Gordon , H. , Nakajima , T. , Lenoble and co-authors. 1997. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res . 102 , 16815 – 16830.  

  44. Kiehl , J. T. , Hack , J. J. , Bonan , G. B. , Boville , B. A. , Briegleb , B. P. and co-authors. 1996. Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note, NCAR/TN-420±STR, 152.  

  45. Kiehl , J. T. , Schneider , T. L. , Rasch , P. J. , Barth , M. C. and Wong , J. 2000. Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model Version 3. J. Geophys. Res . 105 , 1441 – 1457.  

  46. Koch , D . 2001 . The transport and direct forcing of carbonaceous and sulfate aerosols in the GISS GCM . J. Geophys. Res . 106 , 20311-20 332 .  

  47. Lelieveld , J. , Berresheim , H. , Borrmann , S. , Crutzen , P. J. , !Dentener, E J. and co-authors. 2002. Global air pollution crossroads over the Mediterranean. Science 298, 794 – 799.  

  48. Liousse , C. , Dulac , E , Cachier , H. and Tanre , D . 1997 . Remote sens-ing of carbonaceous aerosol production by African Savanna biomass burning . J. Geophys. Res . 102 , 5895 – 5911 .  

  49. Liousse , C. , Penner , J. E. , Chuang , C. , Walton , J. J. , Eddleman, H. and co-authors. 1996. A global three-dimensional model study of carbona-ceous aerosols. J. Geophys. Res. Atmos. 101 , 19411 – 19432.  

  50. Liousse , C. , Andreae , M.O. , Artaxo , P. , Barbosa , P. , Cachier, H. and co-authors. 2004. Deriving global quantitative estimates for spatial and temporal distributions of biomass burning emissions. In: Emissions of Atmospheric Trace Compounds (eds. C. Granier, P. Artaxo, and C. Reeves) Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 544.  

  51. Mallet , M. , Roger , J. C. , Despiau , S. , Dubovik, P. and Putaud, J. P. 2003. Microphyscial and optical properties of aerosol particles in urban zone during ESCOMPTE. Atmos. Res. 69, 73 – 97.  

  52. Martonchik , J. V. , Diner , D. J. , Kahn , R. , Ackerman , T. P. , Verstraete , M. M Pinty, B. and Gorbon, H. R. and co-authors. 1998. Tech-niques for the retrieval of aerosol properties over land and ocean us-ing multiangle imaging. IEEE Trans. Geosci. Remote Sens. 36, 1212 – 1227.  

  53. Mätzler , C . 2002 . MATLAB functions for Mie scattering and absorption . IAP Res. Rep. No . 02 – 08 .  

  54. Menon , S. , Hansen , J. , Nazarenko , L . and Luo , Y . 2002. Climate effects of black carbon aerosols in China and India . Science 27 , 297 : 2250-2253 .  

  55. Molnir , A. , Mészáros , E. , Hansson , H. C. , Karlsson , H. , Gelencser , A. and co-authors. 1999. The importance of organic and elemental carbon in the fine atmospheric aerosol particles. Atmos. Environ., 33, 2745 – 2750.  

  56. Myhre , G. , Stordal , E , Johnsrud , M. , Ignatov , A. , Mishchenko , M. I. and co-authors. 2004. Intercomparison of satellite retrieved aerosol optical depth over the ocean. J. Atmos. Sci . 61, 499 – 513.  

  57. Nunes , T. V. and Pio , C. A . 1993 . Carbonaceous aerosols in industrial and coastal atmospheres . Atmos. Environ . 27 , 1339 – 1346 .  

  58. Olivier , J. G. J., Berdowski, J. J. M., Peters, J. A., Bakker, J., Visschedijk, A. J. H. and and co-authors. 2001. Applications of EDGAR. Including a description of EDGAR 3.0: reference database with trend data for 1970-1995. RIVM, Bilthoven. RIVM report no. 773301 001/NOP report no. 410200 051.  

  59. Pal , J. S. , Small , E. E. and Eltahir , E. A. B. 2000. Simulation of regional - scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res . 105 , 29579 – 29594.  

  60. Penner , J. E. , Andreae , M. , Annegam , H. , Barrie , L. , Feichter , J. and co-authors. 2001. Aerosols, their direct and indirect effects. In: Chapter 5 of Climate Change 2001; The Scientific Basis, Contribution of Work-ing Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)). (eds. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaoxu) Cam-bridge University Press, Cambridge, UK, pp. 289 – 348.  

  61. Penner , J. E. , Zhang , S. Y. , Chin , M. , Chuang , C. C. , Feichter , J. and co-authors. 2002. A comparison of model- and satellite-derived aerosol optical depth and reflectivity. J. Atmos. Sci . 59 , 441 – 460.  

  62. Pio , C. A. , Castro , L. M. , Cequeira , M. A. , Santos , I. M. , Belchior , E and co-authors . 1996. Source assessment of particulate air pollutants measured at the southern European coast. Atmos. Environ . 30 , 3309 – 332 .  

  63. Putaud , J.-P. , Baltensperger , U. , Bruggemann , E. , Facchini , M. C. , Fuzzi , S . and co-authors . 2003. A European aerosol phenomenology. Phys-ical and chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Joint Research Centre, European Commission, EUR 20411 EN .  

  64. Qian , Y. , Giorgi , E , Huang , Y. , Chameides , W. L. and Luo , C . 2001 . Simulation of anthropogenic sulphur over east Asia with a regional coupled chemistry-climate model . Tellus 53B , 171 – 191 .  

  65. Qian , Y. , Leung , L. R. , Ghan , S. J. and Giorgi, E 2003. Regional climate effects of aerosols over China: modeling and observations. Tellus 55B, 914 – 934.  

  66. Reddy , M. S. and Boucher, 0. 2004. A study of the global cycle of carbonaceous aerosols in the LMDZT general circulation model. J. Geophys. Res . 109 , D14202, https://doi.org/10.1029/2003JDO04048 .  

  67. Reid , J. S. , Hobbs , P. V. , Ferek , R. J. , Blake , D. R. , Martins , J. V. and co-authors. 1998. Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. J. Geophys. Res . 103 , 32059-32 080.  

  68. Reid , N. , Misra , P. K. , Bloxam , R. , Yap , D. , Rao , S. T. and co-authors. 2001. Do we understand trends in atmospheric sulphur species. J. Air Waste Manage. Assoc. 51, 1561 – 1567.  

  69. Reid , J. S. , Eck , T. E. ), Christopher, S. A., Koppmann, R., Dubovik, 0. and co-authors. 2004. A review of biomass burning emissions part BI: intensive optical properties of biomass burning particles. Atmos. Chem. Phys. Discuss. 5, 827 – 849.  

  70. Riemer , N. , Vogel , H. and Vogel , B . 2004 . Soot aging time scales in polluted regions during day and night . Atmos. Chem. Phys . 4 , 1885 – 1893 .  

  71. Roelofs , G. J. , Kasibhatla , P. , Barrie , L. , Bergmann , D. , Bridgeman , C. , and co-authors. 2001. Analysis of regional budgets of sulphur species modelled for the COSAM exercise. Tellus 53B, 673 – 694.  

  72. Ruellan , S. , Cachier , H. , Gaudichet , A. , Masclet , P. and Lacaux , J. P . 1999 . Airborne aerosols over central Africa during the experiment for regional sources and sinks of oxidants (EXPRESSO) . J. Geophys. Res . 104 , 30 673-30 690 .  

  73. Schaap , M. , vanLoon , M. , ten Brink, H. M., Dentener, E J. and Builtjes, P. J. H. 2003. The nitrate aerosol field oer Europe: simulations with an atmospheric chemistry-transport model of intermediate complexity. Atmos. Chem. Phys. Discuss 3, 5919 – 5976.  

  74. Seigneur , C . 2001 . Current status of air quality model for particulate matter . J. Air Waste Manage. Assoc . 51 , 1508 – 1521 .  

  75. Seinfeld , J. and Pandis , S. N . 1998 . Atmospheric Chemistry and Physics . John Wiley and Sons Inc ., New York .  

  76. Smith , D. J. T. , Harrison , R. M. , Luhana , L. , Pio , C. A. , Castro , L. M. and co-authors. 1996. Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. At-mos. Environ. 30, 4031 – 4040.  

  77. Stier , P. , Feichter , J. , Kinne , S. , Kloster , S. , Vignati , E. and co-authors . 2005. The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. Discuss . 5 , 1125 – 1156 .  

  78. Tan , Q. , Huang , Y. and Chameides , W. L . 2002 . Budget and export of anthropogenic SOx from east Asia during continental outflow condi-tions . J. Geophys. Res . 107 ( D13 ), 4167 , https://doi.org/10.1029/2001JDO00769 .  

  79. Tanre , D. , Remer , L. A. , Kaufman , Y. J. , Matto° , S. , Hobbs , P. V. and co-authors. 1999. Retrieval of aerosol optical thickness and size distribu-  

  80. tion over ocean from the MODIS airborne simulator during TARFOX . J. Geophys. Res . 104 , 2261 – 2278 .  

  81. Torres , O. , Bhartia , P. K. , Herman, J. R. and Ahmad, Z. 1998. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation. Theoretical Basis. J. Geophys. Res . 103 , 17099 – 17110.  

  82. Torres , O. , Bhartia , P. K. , Herman , J. R. , Sinyuk, A. and Holben, B. 2002. A long term record of aerosol optical thickness from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci . 59 , 398 – 413.  

  83. Tsigaridis , K. and Kanakidou , M . 2003 . Global modeling of secondary organic aerosol in the troposphere: a sensitivity analysis . Atmos. Chem. Phys. Discuss . 3 , 1849 – 1869 .  

  84. van Loon , M. , Roemer , M. G. M. , Builtjes , P. J. H. , Bessagnet , B. , Rouil , L. and co-authors. 2004. Model inter-comparison. In the framework of the review of the Unified EMEP model. TNO-MEPO-R 2004/282. - TNO Report 282: 86 pp.  

  85. Vestreng , V . 2003. EMEP/MSC-W Technical report. Review and Revi-sion. Emission data reported to CLRTAP. MSC-W Status Report 2003. EMEP/MSC-W Note 1/2003. ISSN 0804 – 2446.  

  86. Wolff , E. W. and Cachier , H . 1998 . Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station . J. Geophys. Res . 103 , 11 033-11 041 .  

  87. Yaaqub , R. R. , Davies , T. D. , Jickells , T. D. and Miller , J. M . 1991 . Trace-elements in daily collected aerosols at a site in southeast England . Atmos. Environ . 45A , 985 – 996 .  

  88. Zappoli , S. , Andracchio , A. , Fuzzi , S. , Facchini , M. C. , Gelencser , A. and co-authors. 1999. Inorganic, organic, and macromolecular com-ponents of fine aerosols in different areas of Europe in relation to their water solubility. Atmos. Environ. 33, 2733 – 2743.  

comments powered by Disqus