Start Submission Become a Reviewer

Reading: Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman ...

Download

A- A+
Alt. Display

Original Research Papers

Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde

Authors:

Matthias Tesche ,

Leibniz Institute for Tropospheric Research (IfT), DE; Department of Environmental Science (ITM), Stockholm University, ES
X close

Silke Gross,

Meteorological Institute, Ludwig–Maximilians–Universität; Institute for Atmospheric Physics, German Aerospace Center (DLR), DE
X close

Albert Ansmann,

Leibniz Institute for Tropospheric Research (IfT), DE
X close

Detlef Müller,

Leibniz Institute for Tropospheric Research (IfT), DE; Atmospheric Remote Sensing Laboratory, Gwangju Institute of Science and Technology, KR
X close

Dietrich Althausen,

Leibniz Institute for Tropospheric Research (IfT), DE
X close

Volker Freudenthaler,

Meteorological Institute, Ludwig–Maximilians–Universität, DE
X close

Michael Esselborn

European Southern Observatory (ESO), DE
X close

Abstract

Extensive lidar measurements of Saharan dust and biomass-burning smoke were performed with one airborne and three ground-based instruments in the framework of the second part of the SAharan Mineral dUst experiMent (SAMUM-2a) during January and February of 2008 at Cape Verde. Further lidar observations with one system only were conducted duringMay and June of 2008 (SAMUM-2b). The active measurements were supported by Sun photometer observations. During winter, layers of mineral dust from the Sahara and biomass-burning smoke from southern West Africa pass Cape Verde on their way to South America while pure dust layers cross the Atlantic on their way to the Caribbean during summer. The mean 500-nm aerosol optical thickness (AOT) observed during SAMUM-2a was 0.35 ± 0.18. SAMUM-2a observations showed transport of pure dust within the lowermost 1.5 km of the atmospheric column. In the height range from 1.5 to 5.0 km, mixed dust/smoke layers with mean lidar ratios of 67 ± 14 sr at 355 and 532 nm, respectively, prevailed. Within these layers, wavelength-independent linear particle depolarization ratios of 0.12–0.18 at 355, 532, and 710 nm indicate a large contribution (30–70%) of mineral dust to the measured optical properties. Ångstr¨om exponents for backscatter and extinction of around 0.7 support this finding. Mean extinction coefficients in the height range between 2 and 4 km were 66 ± 6 Mm−1 at 355 nm and 48 ± 5 Mm−1 at 532 nm. Comparisons with airborne high-spectral-resolution lidar observations show good agreement within the elevated layers. 3–5 km deep dust layers where observed during SAMUM-2b. These layers showed optical properties similar to the ones of SAMUM-1 in Morocco with a mean 500-nm AOT of 0.4 ± 0.2. Dust extinction coefficients were about 80 ± 6 Mm−1 at 355 and 532 nm. Dust lidar ratios were 53 ± 10 sr at 355 and 532 nm, respectively. Dust depolarization ratios showed an increase with wavelength from 0.31 ± 0.10 at 532 nm to 0.37 ± 0.07 at 710 nm.

How to Cite: Tesche, M., Gross, S., Ansmann, A., Müller, D., Althausen, D., Freudenthaler, V. and Esselborn, M., 2011. Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde. Tellus B: Chemical and Physical Meteorology, 63(4), pp.649–676. DOI: http://doi.org/10.1111/j.1600-0889.2011.00548.x
4
Views
1
Downloads
  Published on 01 Jan 2011
 Accepted on 3 May 2011            Submitted on 31 Oct 2010

References

  1. Acker , J. G. and Leptoukh , G . 2007 . Online analysis enhances use of NASA Earth science data. EOS 88 , 14 and 17 .  

  2. Althausen , D. , Muller , D. , Ansmann , A. , Wandinger , U. , Hube , H. and co-authors . 2000 . Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Oceanic Technol . 17 , 1469 - 1482 .  

  3. Angstrom , A . 1964 . The parameters of atmospheric turbidity . Taus 16 , 64 – 75 .  

  4. Ansmann , A. , Althausen , D. , Wandinger , U. , Franke , K. , Muller , D. and co-authors . 2000 . Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: A first case study. Geophys. Res. Lett . 27 , 963 - 966 .  

  5. Ansmann , A. , Wandinger , U. , Wiedensohler , A. and Leiterer , U . 2002 . Lindenberg Aerosol Characterization Experiment 1998 (LACE 98): overview. J. Geophys. Res . 107 , doi: https://doi.org/10.1029/2000JDO00233 .  

  6. Ansmann , A. , Bösenberg , J. , Chaikovsky , A. , ComerOn , A. , Eckhardt , S. and co-authors . 2003 . Long-range transport of Saharan dust to northern Europe: The 11-16 October 2001 outbreak observed with EARUNET. J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2003JDO03757 .  

  7. Ansmann , A. and Muller , D . 2005 . Lidar and atmospheric aerosol par-ticles. In: LIDAR-Range-Resolved Optical Remote Sensing of the Atmosphere (ed. C. Weiticamp ), Springer, New York, 105 - 141 .  

  8. Ansmann , A. , Tesche , M. , Althausen , D. , Muller , D. , Freudenthaler , V. and co-authors . 2008 . Influence of Saharan dust on cloud glacia-tion in southern Morocco during SAMUM. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2007JD008785 .  

  9. Ansmann , A. , Baars , H. , Tesche , M. , Muller , D. , Althausen , A. and co-authors . 2009a . Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rain forest. Geophys. Res. Lett . 36 , doi: https://doi.org/10.1029/2009GL037923 .  

  10. Ansmann , A. , Tesche , M. , Seifert , R , Althausen , A. , Engelmann , R. and co-authors . 2009b . Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde. J. Geophys. Res . 114 , doi: https://doi.org/10.1029/2008JD011659 .  

  11. Ansmann , A. , Petzold , A. , Kandler , K. , Tegen , I. , Wendisch , M. and co-authors . 2011 . Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned? Tellus 63B, this issue.  

  12. Arshinov , Y. , Bobrovnilcov , S. , Serilcov , I. , Ansmann , A. , Wandinger , U. and co-authors . 2005 . Daytime operation of a pure rotational-Raman lidar by the use of a Fabry-Perot interferometer. AppL Opt . 44 , 3593 - 3603 .  

  13. Balis , D. S. , Amiridis , V , Zerefos , C. , Gerasopoulos , E. , Andreae , M. and co-authors . 2003 . Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece, during a biomass-burning episode. Atmos. Environ . 37 , 4529 - 4538 .  

  14. Balis , D. S. , Amiridis , V. , Nickovic , S. , Papayannis , A. and Zere-fos , C . 2004 . Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece. Geophys. Res. Lett . 31 , doi: https://doi.org/10.1029/2004GL019881 .  

  15. Bauer , S. , Bierwirth , E. , Wendisch , M. , Esselborn , M. , Heinold , B. and co-authors . 2011 . Airborne spectral radiation measurements to esti-mate single-scattering albedo and radiative forcing of Saharan dust and biomass-burning smoke particles. Tellus 63B, this issue.  

  16. Ben-Ami , Y. , Koren , I. and Altaratz , O . 2009 . Patterns of North African dust transport over the Atlantic: Winter vs. summer, based on CALIPSO first year data . Atmos. Chem. Phys . 9 , 7867 – 7875 .  

  17. Ben-Ami , Y. , Koren , I. , Rudich , Y. , Artaxo , P. , Martin , S. T. and co-authors . 2010 . Transport of North African dust from the Bodele de-pression to the Amazon Basin: A case study. Atmos. Chem. Phys . 10 , 7533 - 7544 .  

  18. Bucholtz , A . 1995 . Rayleigh-scattering calculations for the terrestrial atmosphere . AppL Opt . 34 , 2765 – 2773 .  

  19. Campbell , J. R. , Welton , E. J. , Spinhirne , J. D. , Ji , Q. , Tsay , S.-C. and co-authors . 2003 . Micropulse lidar observations of tropo-spheric aerosols over northeastern South Africa during the ARREX and SAFARI 2000 dry season experiments. J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2002JD002563 .  

  20. Cattrall , C. , Reagan , J. , Thome , K. and Dubovilc , O . 2005 . Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. J. Geophys. Res . 110 , doi: https://doi.org/10.1029/2004JD005124 .  

  21. Draxler , R. R. and Rolph , G. D . 2010 . HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready . arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory , Silver Spring , MD .  

  22. Eck , T. F. , Holben , B. N. , Reid , J. S. , Dubovilc , O. , Smirnov , A. and co-authors . 1999 . Wavelength dependence of the optical depth of biomass-burning, urban, and desert dust aerosols. J. Geophys. Res . 104 , 31333 - 31349 .  

  23. Eloranta , E. E . 2005 . High Spectral Resolution Lidar. In: LIDAR—Range-resolved optical remote sensing of the atmosphere (ed. C. Weiticamp ), Springer, New York, 143 - 164 .  

  24. Engelmann , R. , Ansmann , A. , Tesche , M. , Seifert , P. , Althausen , A. and co-authors . 2011 . Doppler lidar studies of heat island effects on vertical mixing of aerosols during SAMUM-2. Tellus 63B, this issue.  

  25. Esselborn , M. , Wirth , M. , Fix , A. , Tesche , M. and Ehret , G . 2008 . Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. Appl. Opt . 47 , doi: https://doi.org/10.1364/A0.47.000346 .  

  26. Esselborn , M. , Wirth , M. , Fix , A. , Weinzierl , B. , Rasp , K. and co-authors . 2009 . Spatial distribution and optical properties of Saharan dust ob-served by airborne high spectral resolution lidar during SAMUM 2006. Tellus 61B , doi:j.1600-0889.2008.00394.x.  

  27. Franke , K. , Ansmann , A. , Muller , D. , Althausen , D. , Wagner , F. and co-authors . 2001 . One-year observations of particle lidar ratio over the tropical Indian ocean with Raman lidar. Geophys. Res. Lett . 28 , doi: https://doi.org/10.1029/2001GL013671 .  

  28. Franke , K. , Ansmann , A. , Muller , D. , Althausen , D. , Venlcataraman , C. and co-authors . 2003 . Optical properties of the Indo-Asian haze layer over the tropical Indian ocean. J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2002JD002473 .  

  29. Freudenthaler , V. , Esselborn , M. , Wiegner , M. , Heese , B. , Tesche , M. and co-authors . 2009 . Depolarization-ratio profiling at several wave-lengths in pure Saharan dust during SAMUM 2006. Tellus 61B , doi:j.1600-0889.2008.00396.x.  

  30. Gasteiger , J. , Wiegner , M. , Toledano , C. , Gross , S. , Freudenthaler , V. and co-authors . 2011 . Modeling lidar-relevant optical properties of complex mineral dust aerosols. Tellus 63B, this issue.  

  31. Goudie , A. S. and Middleton , N. J . 2001 . Saharan dust storms: Nature and consequences . Earth-Sci. Rev . 56 , 179 – 204 .  

  32. Groß , S. , Tesche , M. , Freudenthaler , V , Toledano , C. , Wiegner , M. and co-authors . 2011a . Characterization of Saharan dust, marine aerosols, and a mixture of biomass-burning aerosols and dust by means of multi-wavelength depolarization- and Raman measurements during SAMUM-2. Tellus 63B, this issue.  

  33. Groß , S. , Freudenthaler , V. , Wiegner , M ., Greifs , A. , Tesche , M. and co-authors . 2011b . Characterization of the planetary boundary layer during SAMUM-2 by means of lidar measurements. Tellus 63B, this issue.  

  34. Haywood , J. M. , Pelon , J. , Formenti , P. , Bharmal , N. , Brooks , M. and co-authors . 2008 . Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-O. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2008JD010077 .  

  35. Heese , B. and Wiegner , M . 2008 . Vertical aerosol profiles from Raman polarization lidar observations during the dry season AMMA field campaign. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2007JD009487 .  

  36. Heese , B. , Dinter , T. , Esselborn , M. , Muller , T. , Althausen , D. and co-authors . 2009 . Lidar profiles of dust optical properties over Tinfou, Morocco, during SAMUM. Tellus 61B , doi:j.1600-0889.2008.00404.x.  

  37. Heinold , B. , Tegen , I. , Bauer , S. and Wendisch , M . 2011 . Regional modelling of Saharan dust and biomass burning Part 2: Direct radiative forcing and atmospheric dynamic response. Tellus 63B, this issue.  

  38. Heintzenberg , J . 2009 . The SAMUM-1 experiment over south-ern Morocco: Overview and introduction. Tellus 61B , doi:j.1600-0889.2008.00403.x.  

  39. Holben , B. N. , Eck , T. F. , Slutsker , I. , Tanre , D. , Buis , J. P. and co-authors . 1998 . AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ . 66 , 1 - 16 .  

  40. Huang , J. , Zhang , C. and Prospero , J. M . 2010 . African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropi-cal Atlantic ocean. J. Geophys. Res . 115 , doi: https://doi.org/10.1029/2009JDO12516 .  

  41. Johnson , T. B. , Osborne , S. R. , Haywood , J. M. and Harri-son , M. A. J . 2008a . Aircraft measurements of biomass-burning aerosol over West Africa during DABEX. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2007JD009451 .  

  42. Johnson , T. B. , Heese , B. , McFarlane , S. A. , Chazette , P. , Jones , A. and co-authors . 2008b . Vertical distribution and radiative effects of mineral dust and biomass-burning aerosol over West Africa during DABEX. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2008JD009848 .  

  43. Kalu , A. E . 1979 . The African dust plume: Its characteristics and prop-agation across West Africa in winter. 95-118 in Saharan Dust (ed. C. Morales ). J. Wiley and Sons, Chichester.  

  44. Kandler , K. , Lieke , K. , Benker , N. , Kiipper , M. , Emmel , C. and co-authors . 2011 . Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Micro-physical properties and mineralogy. Tellus , this issue.  

  45. Karyampudi , V. M. , Palm , S. P. , Reagan , J. A. , Fang , H. , Grant , W. B. and co-authors . 1999 . Validation of the Saharan dust plume conceptual model using lidar. Bull. Am. MeteoroL Soc . 80 , 1045 - 1075 .  

  46. Kaufman , Y. J. , Smirnov , A. , Holben , B. N. and Dubovilc , O . 2001 . Baseline maritime aerosol: Methodology to derive the op-tical thickness and scattering properties. Geophys. Res. Lett . 28 , doi: https://doi.org/10.1029/2001GL013312 .  

  47. Kaufman , Y. J. , Koren , I. , Remer , L. A. , Tanre , D. , Ginoux , P. and co-authors . 2005 . Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MOD'S) spacecraft over the Atlantic Ocean. J. Geophys. Res . 110 , doi: https://doi.org/10.1029/2003JD004436 .  

  48. Knippertz , P. , Tesche , M. , Heinold , B. , Kandler , K. , Toledano , C. and co-authors . 2011 . Dust mobilization and transport from West Africa to Cape Verde—A meteorological overview of SAMUM-2. Tellus 63B, this issue.  

  49. Leon , J.-F. , Tanre , D. , Pelon , J. , Kaufman , Y. J. , Haywood , J. M. and co-authors . 2003 . Profiling of a Saharan dust outbreak based on a synergy between active and passive remote sensing. J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2002JD002774 .  

  50. Lieke , K. , Kandler , K. , Emmel , C. , Petzold , A. , Weinzierl , B. and co-authors . 2011 . Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde islands. Tellus 63B, this issue.  

  51. Liu , Z. , Omar , A. , Vaughan , M. , Hair , J. , Kittalca , C. and co-authors . 2008a . CALIPSO lidar observations of the optical properties of Saha-ran dust: A case study of long-range transport. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2007JD008878 .  

  52. Liu , D. , Wang , Z. , Liu , Z. , Winker , D. and Trepte , C . 2008b . A height re-solved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2007JD009776 .  

  53. Mattis , I. , Ansmann , A. , Muller , D. , Wandinger , U. and Althausen , D . 2002 . Dual-wavelength Raman lidar observations of the extinction-to-bacicscatter ratio of Saharan dust. Geophys. Res. Lett . 29 , doi: https://doi.org/10.1029/2002GL014721 .  

  54. Mattis , I. , Tesche , M. , Grein , M. , Freudenthaler , V. and Muller , D . 2009 . Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: Quantification and er-ror correction scheme. Appl. Opt . 48 , doi: https://doi.org/10.1364/A0.48.002742 .  

  55. Mishchenko , M. I. , Travis , L. D. , Kahn , R. A. and West , R. A . 1997 . Modeling phase functions for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids . J. Geo-phys. Res . 102 , 16831 – 16847 .  

  56. McGill , M. J. , Hlavka , D. L. , Hart , W. D. , Welton , E. J. and Campbell , J. R . 2003 . Airborne lidar measurements of aerosol optical properties during SAFARI-2000. J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2002JD002370 .  

  57. Mona , L. , Amodeo , A. , Pandolfi , M. and Pappalardo , G . 2006 . Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements. J. Geophys. Res . 111 , doi: https://doi.org/10.1029/2005JDO06569 .  

  58. Muller , D. , Mattis , I. , Wandinger , U. , Ansmann , A. , Althausen , D. and co-authors . 2003 . Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and Sun photometer. J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2002JDO02918 .  

  59. Muller , D. , Mattis , I. , Wandinger , U. , Ansmann , A. , Althausen , D. and co-authors . 2005 . Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization. J. Geophys. Res . 110 , doi: https://doi.org/10.1029/2004JD005756 .  

  60. Muller , D. , Ansmann , A. , Mattis , I. , Tesche , M. , Wandinger , U. and co-authors . 2007 . Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res . 112 , doi: https://doi.org/10.1029/2006JDO08292 .  

  61. Muller , D. , Heinold , B. , Tesche , M. , Tegen , I. , Althausen , D. and co-authors . 2009 . EARLINET observations of the 14-22-May long-range dust transport event during SAMUM 2006: Validation of results from dust transport modeling. Tellus 61B , doi:j.1600-0889.2008.00400.x.  

  62. Omar , A. , Winker , D. M. , Kittaka , C. , Vaughan , M. A. , Liu , Z. and co-authors . 2009 . The CALIPSO automated aerosol classification and lidar-ratio selection algorithm . J. Atmos. Oceanic Technol . 26 , 1994– 2014 .  

  63. Omar , A. H. , Liu , Z. , Vaughan , M. A. , Thornhill , K. L. , Kittaka , C. and co-authors . 2010 . Extinction-to-backscatter ratios of Saha-ran dust layers derived from in-situ measurements and CALIPSO overflights during NAMMA. J. Geophys. Res . 115 , doi: https://doi.org/10.1029/2010JD014223 .  

  64. Papayannis , A. , Amiridis , V. , Mona , L. , Tsaknakis , G. , Balis , D. and co-authors . 2008 . Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002). J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2007J1D009028 .  

  65. Pelon , J. , Mallet , M. , Mariscal , A. , Goloub , R , Tanfe , D. and co-authors . 2008 . Microlidar observations of biomass-burning aerosol over Djougou (Benin) during African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-burning Experiment. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2008JDO09976 .  

  66. Perez , C. , Nickovic , S. , Baldasano , J. M. , Sicard , M. , Rocadenbosch , F. and co-authors . 2006 . A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling. J. Geophys. Res . 111 , doi: https://doi.org/10.1029/2005JD006579 .  

  67. Prospero , J. M. and Carlson , T. N . 1972 . Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic ocean . J. Geophys. Res . 77 , 5255 – 5265 .  

  68. Prospero , J. M. and Carlson , T. N . 1980 . Saharan air outbreaks over the tropical North Atlantic . Pure Appl. Geophys . 119 , 677 – 691 .  

  69. Reid , J. S. , Kinney , J. E. , Westphal , D. L. , Holben , B. N. , Welton , E. J. and co-authors . 2003 . Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2002JD002493 .  

  70. Reid , J. S. , Piketh , S. J. , Walker , A. L. , Burger , R. P. , Ross , K. E. and co-authors . 2008 . An overview of UAE2 flight opera-tions: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf. J. Geophys. Res . 113 , doi: https://doi.org/10.1029/2007JD009435 .  

  71. Russel , P. B. and Heintzenberg , J . 2000 . An overview of the ACE-2 clear sky column closure experiment (CLEARCOLUMN) . Tellus 52B , 463 – 483 .  

  72. Sassen , K . 2005 . Polarization in lidar. In: LIDAR—Range-Resolved Op-tical Remote Sensing of the Atmosphere (eds C. Weiticamp ), Springer, New York, 105 - 141 .  

  73. Schepanslci , K. , Tegen , I. and Macke , A . 2009 . Saharan dust transport and deposition towards the tropical northern Atlantic . Atmos. Chem. Phys . 9 , 1173 – 1189 .  

  74. Sokolilc , I. , Winker , D. M. , Bergametti , G. , Kaufmann , Y. J. , Gomes , L. and co-authors . 2001 . Introduction to special section: Outstand-ing problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res . 106 , doi: https://doi.org/10.1029/2000JD900498 .  

  75. Tanre , D. , Haywood , J. , Pelon , J. , Leon , J. -F. , Chatenet, B. and co-authors . 2003 . Measurements and modeling of the Saharan dust ra-diative impact: overview of the Saharan Dust Experiment (SHADE). J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2002JD003273 .  

  76. Tesche , M. , Ansmann , A. , Muller , D. , Althausen , D. , Mattis , I. and co-authors . 2009a . Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus 61B , doi:j.1600-0889.2008.00390.x.  

  77. Tesche , M. , Ansmann , A. , Muller , D. , Althausen , D. , Engelmann , R. and co-authors . 2009b . Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res . 114 , doi: https://doi.org/10.1029/2009JD011862 .  

  78. Tesche , M. , Muller , D ., Grofs , S. , Ansmann , A. , Althausen , D. and co-authors . 2011 . Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements. Tellus 63B, this issue.  

  79. Toledano , C. , Wiegner , M. , Garhammer , M. , Seefeldner , M. , Gasteiger , J. and co-authors . 2009 . Spectral aerosol optical depth characterization of desert dust during SAMUM 2006. Tellus 61B , https://doi.org/10.1111/j.1600-0889.2008.00382.x .  

  80. Toledano , C. , Wiegner , M. , Garhammer , M. , Seefeldner , M. , Garsteiger , J. and co-authors . 2011 . Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2. Tellus 63B , this issue.  

  81. Wandinger , U. and Ansmann , A . 2002 . Experimental determination of the lidar overlap profile with Raman lidar . Appl. Opt . 41 , 511 – 514 .  

  82. Wandinger , U. , Muller , D. , Bockmann , C. , Althausen , D. , Matthias , V , and co-authors . 2002 . Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multi-wavelength lidar and aircraft measurements. J. Geophys. Res . 107 , doi: https://doi.org/10.1029/2000JD000202 .  

  83. Wandinger , U. , Tesche , M. , Seifert , P. , Ansmann , A. , Muller , D. and co-authors . 2010 . Size matters: Influence of multiple scattering on CALIPSO light-extinction profiling in desert dust. Geophys. Res. Lett . 37 , doi: https://doi.org/10.1029/2010GL042527 .  

  84. Weinzierl , B. , Petzold , A. , Esselborn , M. , Wirth , M. , Rasp , K. and co-authors . 2009 . Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B , doi:j.1600-0889.2008.00392.x.  

  85. Weinzierl , B. , Sauer , D. , Esselborn , M. , Petzold , A. , Mund , S. and co-authors . 2011 . Airborne observations of microphysical and optical properties of dust and biomass-burning aerosol layers in the Cape Verde region during SAMUM 2008. Tellus 63B, this issue.  

  86. Winker , D. M. , Vaughan , M. A. , Omar , A. , Hu , Y. , Powell , K. A. and co-authors . 2009 . Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol . 26 , 2310 - 2323 .  

comments powered by Disqus